Copied to
clipboard

G = Q83D30order 480 = 25·3·5

2nd semidirect product of Q8 and D30 acting via D30/D15=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C83D30, C409D6, C249D10, Q83D30, D1209C2, D4.3D30, C1204C22, SD161D15, D30.31D4, D6015C22, C60.68C23, Dic15.36D4, (C5×Q8)⋊9D6, C55(Q83D6), (C3×Q8)⋊6D10, C40⋊S31C2, D4⋊D1511C2, (D4×D15)⋊10C2, C35(D40⋊C2), (C3×SD16)⋊1D5, (C5×SD16)⋊1S3, (C5×D4).15D6, C2.19(D4×D15), C6.112(D4×D5), Q83D158C2, C1531(C8⋊C22), (C15×SD16)⋊1C2, (C3×D4).15D10, C30.319(C2×D4), C10.114(S3×D4), C4.5(C22×D15), C153C816C22, Q82D1510C2, (Q8×C15)⋊13C22, C20.106(C22×S3), (D4×C15).22C22, (C4×D15).25C22, C12.106(C22×D5), SmallGroup(480,879)

Series: Derived Chief Lower central Upper central

C1C60 — Q83D30
C1C5C15C30C60C4×D15D4×D15 — Q83D30
C15C30C60 — Q83D30
C1C2C4SD16

Generators and relations for Q83D30
 G = < a,b,c,d | a4=c30=d2=1, b2=a2, bab-1=cac-1=dad=a-1, cbc-1=a-1b, dbd=ab, dcd=c-1 >

Subgroups: 1092 in 136 conjugacy classes, 41 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C6, C8, C8, C2×C4, D4, D4, Q8, C23, D5, C10, C10, Dic3, C12, C12, D6, C2×C6, C15, M4(2), D8, SD16, SD16, C2×D4, C4○D4, Dic5, C20, C20, D10, C2×C10, C3⋊C8, C24, C4×S3, D12, C3⋊D4, C3×D4, C3×Q8, C22×S3, D15, C30, C30, C8⋊C22, C52C8, C40, C4×D5, D20, C5⋊D4, C5×D4, C5×Q8, C22×D5, C8⋊S3, D24, D4⋊S3, Q82S3, C3×SD16, S3×D4, Q83S3, Dic15, C60, C60, D30, D30, C2×C30, C8⋊D5, D40, D4⋊D5, Q8⋊D5, C5×SD16, D4×D5, Q82D5, Q83D6, C153C8, C120, C4×D15, C4×D15, D60, D60, C157D4, D4×C15, Q8×C15, C22×D15, D40⋊C2, C40⋊S3, D120, D4⋊D15, Q82D15, C15×SD16, D4×D15, Q83D15, Q83D30
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2×D4, D10, C22×S3, D15, C8⋊C22, C22×D5, S3×D4, D30, D4×D5, Q83D6, C22×D15, D40⋊C2, D4×D15, Q83D30

Smallest permutation representation of Q83D30
On 120 points
Generators in S120
(1 114 17 99)(2 100 18 115)(3 116 19 101)(4 102 20 117)(5 118 21 103)(6 104 22 119)(7 120 23 105)(8 106 24 91)(9 92 25 107)(10 108 26 93)(11 94 27 109)(12 110 28 95)(13 96 29 111)(14 112 30 97)(15 98 16 113)(31 78 63 46)(32 47 64 79)(33 80 65 48)(34 49 66 81)(35 82 67 50)(36 51 68 83)(37 84 69 52)(38 53 70 85)(39 86 71 54)(40 55 72 87)(41 88 73 56)(42 57 74 89)(43 90 75 58)(44 59 76 61)(45 62 77 60)
(1 68 17 36)(2 84 18 52)(3 70 19 38)(4 86 20 54)(5 72 21 40)(6 88 22 56)(7 74 23 42)(8 90 24 58)(9 76 25 44)(10 62 26 60)(11 78 27 46)(12 64 28 32)(13 80 29 48)(14 66 30 34)(15 82 16 50)(31 109 63 94)(33 111 65 96)(35 113 67 98)(37 115 69 100)(39 117 71 102)(41 119 73 104)(43 91 75 106)(45 93 77 108)(47 95 79 110)(49 97 81 112)(51 99 83 114)(53 101 85 116)(55 103 87 118)(57 105 89 120)(59 107 61 92)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 17)(2 16)(3 30)(4 29)(5 28)(6 27)(7 26)(8 25)(9 24)(10 23)(11 22)(12 21)(13 20)(14 19)(15 18)(31 56)(32 55)(33 54)(34 53)(35 52)(36 51)(37 50)(38 49)(39 48)(40 47)(41 46)(42 45)(43 44)(57 60)(58 59)(61 90)(62 89)(63 88)(64 87)(65 86)(66 85)(67 84)(68 83)(69 82)(70 81)(71 80)(72 79)(73 78)(74 77)(75 76)(91 107)(92 106)(93 105)(94 104)(95 103)(96 102)(97 101)(98 100)(108 120)(109 119)(110 118)(111 117)(112 116)(113 115)

G:=sub<Sym(120)| (1,114,17,99)(2,100,18,115)(3,116,19,101)(4,102,20,117)(5,118,21,103)(6,104,22,119)(7,120,23,105)(8,106,24,91)(9,92,25,107)(10,108,26,93)(11,94,27,109)(12,110,28,95)(13,96,29,111)(14,112,30,97)(15,98,16,113)(31,78,63,46)(32,47,64,79)(33,80,65,48)(34,49,66,81)(35,82,67,50)(36,51,68,83)(37,84,69,52)(38,53,70,85)(39,86,71,54)(40,55,72,87)(41,88,73,56)(42,57,74,89)(43,90,75,58)(44,59,76,61)(45,62,77,60), (1,68,17,36)(2,84,18,52)(3,70,19,38)(4,86,20,54)(5,72,21,40)(6,88,22,56)(7,74,23,42)(8,90,24,58)(9,76,25,44)(10,62,26,60)(11,78,27,46)(12,64,28,32)(13,80,29,48)(14,66,30,34)(15,82,16,50)(31,109,63,94)(33,111,65,96)(35,113,67,98)(37,115,69,100)(39,117,71,102)(41,119,73,104)(43,91,75,106)(45,93,77,108)(47,95,79,110)(49,97,81,112)(51,99,83,114)(53,101,85,116)(55,103,87,118)(57,105,89,120)(59,107,61,92), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,17)(2,16)(3,30)(4,29)(5,28)(6,27)(7,26)(8,25)(9,24)(10,23)(11,22)(12,21)(13,20)(14,19)(15,18)(31,56)(32,55)(33,54)(34,53)(35,52)(36,51)(37,50)(38,49)(39,48)(40,47)(41,46)(42,45)(43,44)(57,60)(58,59)(61,90)(62,89)(63,88)(64,87)(65,86)(66,85)(67,84)(68,83)(69,82)(70,81)(71,80)(72,79)(73,78)(74,77)(75,76)(91,107)(92,106)(93,105)(94,104)(95,103)(96,102)(97,101)(98,100)(108,120)(109,119)(110,118)(111,117)(112,116)(113,115)>;

G:=Group( (1,114,17,99)(2,100,18,115)(3,116,19,101)(4,102,20,117)(5,118,21,103)(6,104,22,119)(7,120,23,105)(8,106,24,91)(9,92,25,107)(10,108,26,93)(11,94,27,109)(12,110,28,95)(13,96,29,111)(14,112,30,97)(15,98,16,113)(31,78,63,46)(32,47,64,79)(33,80,65,48)(34,49,66,81)(35,82,67,50)(36,51,68,83)(37,84,69,52)(38,53,70,85)(39,86,71,54)(40,55,72,87)(41,88,73,56)(42,57,74,89)(43,90,75,58)(44,59,76,61)(45,62,77,60), (1,68,17,36)(2,84,18,52)(3,70,19,38)(4,86,20,54)(5,72,21,40)(6,88,22,56)(7,74,23,42)(8,90,24,58)(9,76,25,44)(10,62,26,60)(11,78,27,46)(12,64,28,32)(13,80,29,48)(14,66,30,34)(15,82,16,50)(31,109,63,94)(33,111,65,96)(35,113,67,98)(37,115,69,100)(39,117,71,102)(41,119,73,104)(43,91,75,106)(45,93,77,108)(47,95,79,110)(49,97,81,112)(51,99,83,114)(53,101,85,116)(55,103,87,118)(57,105,89,120)(59,107,61,92), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,17)(2,16)(3,30)(4,29)(5,28)(6,27)(7,26)(8,25)(9,24)(10,23)(11,22)(12,21)(13,20)(14,19)(15,18)(31,56)(32,55)(33,54)(34,53)(35,52)(36,51)(37,50)(38,49)(39,48)(40,47)(41,46)(42,45)(43,44)(57,60)(58,59)(61,90)(62,89)(63,88)(64,87)(65,86)(66,85)(67,84)(68,83)(69,82)(70,81)(71,80)(72,79)(73,78)(74,77)(75,76)(91,107)(92,106)(93,105)(94,104)(95,103)(96,102)(97,101)(98,100)(108,120)(109,119)(110,118)(111,117)(112,116)(113,115) );

G=PermutationGroup([[(1,114,17,99),(2,100,18,115),(3,116,19,101),(4,102,20,117),(5,118,21,103),(6,104,22,119),(7,120,23,105),(8,106,24,91),(9,92,25,107),(10,108,26,93),(11,94,27,109),(12,110,28,95),(13,96,29,111),(14,112,30,97),(15,98,16,113),(31,78,63,46),(32,47,64,79),(33,80,65,48),(34,49,66,81),(35,82,67,50),(36,51,68,83),(37,84,69,52),(38,53,70,85),(39,86,71,54),(40,55,72,87),(41,88,73,56),(42,57,74,89),(43,90,75,58),(44,59,76,61),(45,62,77,60)], [(1,68,17,36),(2,84,18,52),(3,70,19,38),(4,86,20,54),(5,72,21,40),(6,88,22,56),(7,74,23,42),(8,90,24,58),(9,76,25,44),(10,62,26,60),(11,78,27,46),(12,64,28,32),(13,80,29,48),(14,66,30,34),(15,82,16,50),(31,109,63,94),(33,111,65,96),(35,113,67,98),(37,115,69,100),(39,117,71,102),(41,119,73,104),(43,91,75,106),(45,93,77,108),(47,95,79,110),(49,97,81,112),(51,99,83,114),(53,101,85,116),(55,103,87,118),(57,105,89,120),(59,107,61,92)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,17),(2,16),(3,30),(4,29),(5,28),(6,27),(7,26),(8,25),(9,24),(10,23),(11,22),(12,21),(13,20),(14,19),(15,18),(31,56),(32,55),(33,54),(34,53),(35,52),(36,51),(37,50),(38,49),(39,48),(40,47),(41,46),(42,45),(43,44),(57,60),(58,59),(61,90),(62,89),(63,88),(64,87),(65,86),(66,85),(67,84),(68,83),(69,82),(70,81),(71,80),(72,79),(73,78),(74,77),(75,76),(91,107),(92,106),(93,105),(94,104),(95,103),(96,102),(97,101),(98,100),(108,120),(109,119),(110,118),(111,117),(112,116),(113,115)]])

60 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C5A5B6A6B8A8B10A10B10C10D12A12B15A15B15C15D20A20B20C20D24A24B30A30B30C30D30E30F30G30H40A40B40C40D60A60B60C60D60E60F60G60H120A···120H
order1222223444556688101010101212151515152020202024243030303030303030404040406060606060606060120···120
size1143060602243022284602288482222448844222288884444444488884···4

60 irreducible representations

dim11111111222222222222224444444
type+++++++++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D4D5D6D6D6D10D10D10D15D30D30D30C8⋊C22S3×D4D4×D5Q83D6D40⋊C2D4×D15Q83D30
kernelQ83D30C40⋊S3D120D4⋊D15Q82D15C15×SD16D4×D15Q83D15C5×SD16Dic15D30C3×SD16C40C5×D4C5×Q8C24C3×D4C3×Q8SD16C8D4Q8C15C10C6C5C3C2C1
# reps11111111111211122244441122448

Matrix representation of Q83D30 in GL4(𝔽241) generated by

100103
01138138
2342342400
700240
,
0025206
0018160
21722700
21723100
,
6414818024
10917315156
0016193
0014884
,
30110238195
143211198226
0016193
0011080
G:=sub<GL(4,GF(241))| [1,0,234,7,0,1,234,0,0,138,240,0,103,138,0,240],[0,0,217,217,0,0,227,231,25,181,0,0,206,60,0,0],[64,109,0,0,148,173,0,0,180,15,161,148,24,156,93,84],[30,143,0,0,110,211,0,0,238,198,161,110,195,226,93,80] >;

Q83D30 in GAP, Magma, Sage, TeX

Q_8\rtimes_3D_{30}
% in TeX

G:=Group("Q8:3D30");
// GroupNames label

G:=SmallGroup(480,879);
// by ID

G=gap.SmallGroup(480,879);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,422,135,100,346,185,80,2693,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^30=d^2=1,b^2=a^2,b*a*b^-1=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=a^-1*b,d*b*d=a*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽