Extensions 1→N→G→Q→1 with N=C2xS3xD5 and Q=C4

Direct product G=NxQ with N=C2xS3xD5 and Q=C4
dρLabelID
S3xC2xC4xD5120S3xC2xC4xD5480,1086

Semidirect products G=N:Q with N=C2xS3xD5 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2xS3xD5):1C4 = D5xD6:C4φ: C4/C2C2 ⊆ Out C2xS3xD5120(C2xS3xD5):1C4480,547
(C2xS3xD5):2C4 = S3xD10:C4φ: C4/C2C2 ⊆ Out C2xS3xD5120(C2xS3xD5):2C4480,548
(C2xS3xD5):3C4 = D30.27D4φ: C4/C2C2 ⊆ Out C2xS3xD5120(C2xS3xD5):3C4480,549
(C2xS3xD5):4C4 = C2xD6:F5φ: C4/C2C2 ⊆ Out C2xS3xD5120(C2xS3xD5):4C4480,1000
(C2xS3xD5):5C4 = S3xC22:F5φ: C4/C2C2 ⊆ Out C2xS3xD5608+(C2xS3xD5):5C4480,1011
(C2xS3xD5):6C4 = C22xS3xF5φ: C4/C2C2 ⊆ Out C2xS3xD560(C2xS3xD5):6C4480,1197

Non-split extensions G=N.Q with N=C2xS3xD5 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2xS3xD5).1C4 = D5xC8:S3φ: C4/C2C2 ⊆ Out C2xS3xD51204(C2xS3xD5).1C4480,320
(C2xS3xD5).2C4 = S3xC8:D5φ: C4/C2C2 ⊆ Out C2xS3xD51204(C2xS3xD5).2C4480,321
(C2xS3xD5).3C4 = C40:D6φ: C4/C2C2 ⊆ Out C2xS3xD51204(C2xS3xD5).3C4480,322
(C2xS3xD5).4C4 = S3xD5:C8φ: C4/C2C2 ⊆ Out C2xS3xD51208(C2xS3xD5).4C4480,986
(C2xS3xD5).5C4 = S3xC4.F5φ: C4/C2C2 ⊆ Out C2xS3xD51208(C2xS3xD5).5C4480,988
(C2xS3xD5).6C4 = D15:M4(2)φ: C4/C2C2 ⊆ Out C2xS3xD51208(C2xS3xD5).6C4480,991
(C2xS3xD5).7C4 = C5:C8:D6φ: C4/C2C2 ⊆ Out C2xS3xD51208(C2xS3xD5).7C4480,993
(C2xS3xD5).8C4 = S3xC8xD5φ: trivial image1204(C2xS3xD5).8C4480,319

׿
x
:
Z
F
o
wr
Q
<