Copied to
clipboard

G = D30.27D4order 480 = 25·3·5

11st non-split extension by D30 of D4 acting via D4/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D30.27D4, D6⋊C414D5, D610(C4×D5), (C2×C20)⋊16D6, C6.66(D4×D5), D1012(C4×S3), (C2×C12)⋊16D10, C10.53(S3×D4), D6⋊Dic523C2, (C2×C60)⋊14C22, (C2×Dic5)⋊11D6, D30.32(C2×C4), C30.161(C2×D4), D10⋊C414S3, D152(C22⋊C4), (C2×Dic3)⋊11D10, C2.5(C20⋊D6), C30.69(C22×C4), (C6×Dic5)⋊2C22, (C22×D5).58D6, C2.4(D10⋊D6), D10⋊Dic323C2, (C2×C30).163C23, (C10×Dic3)⋊2C22, (C22×S3).49D10, (C2×Dic15)⋊29C22, (C22×D15).111C22, (C2×S3×D5)⋊3C4, C52(S3×C22⋊C4), C31(D5×C22⋊C4), C6.37(C2×C4×D5), C2.39(C4×S3×D5), (C6×D5)⋊8(C2×C4), (C2×C4×D15)⋊12C2, (C2×C4)⋊13(S3×D5), C155(C2×C22⋊C4), C10.70(S3×C2×C4), (C5×D6⋊C4)⋊14C2, (S3×C10)⋊15(C2×C4), (C22×S3×D5).3C2, C22.72(C2×S3×D5), (D5×C2×C6).41C22, (C2×D30.C2)⋊12C2, (S3×C2×C10).41C22, (C3×D10⋊C4)⋊14C2, (C2×C6).175(C22×D5), (C2×C10).175(C22×S3), SmallGroup(480,549)

Series: Derived Chief Lower central Upper central

C1C30 — D30.27D4
C1C5C15C30C2×C30D5×C2×C6C22×S3×D5 — D30.27D4
C15C30 — D30.27D4
C1C22C2×C4

Generators and relations for D30.27D4
 G = < a,b,c,d | a30=b2=c4=1, d2=a15, bab=a-1, ac=ca, dad-1=a11, bc=cb, dbd-1=a10b, dcd-1=a15c-1 >

Subgroups: 1676 in 264 conjugacy classes, 66 normal (44 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, S3, C6, C6, C2×C4, C2×C4, C23, D5, C10, C10, Dic3, C12, D6, D6, C2×C6, C2×C6, C15, C22⋊C4, C22×C4, C24, Dic5, C20, D10, D10, C2×C10, C2×C10, C4×S3, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C22×S3, C22×S3, C22×C6, C5×S3, C3×D5, D15, C30, C2×C22⋊C4, C4×D5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, C22×D5, C22×C10, D6⋊C4, D6⋊C4, C6.D4, C3×C22⋊C4, S3×C2×C4, S3×C23, C5×Dic3, C3×Dic5, Dic15, C60, S3×D5, C6×D5, C6×D5, S3×C10, S3×C10, D30, C2×C30, D10⋊C4, D10⋊C4, C23.D5, C5×C22⋊C4, C2×C4×D5, C23×D5, S3×C22⋊C4, D30.C2, C6×Dic5, C10×Dic3, C4×D15, C2×Dic15, C2×C60, C2×S3×D5, C2×S3×D5, D5×C2×C6, S3×C2×C10, C22×D15, D5×C22⋊C4, D10⋊Dic3, D6⋊Dic5, C3×D10⋊C4, C5×D6⋊C4, C2×D30.C2, C2×C4×D15, C22×S3×D5, D30.27D4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D5, D6, C22⋊C4, C22×C4, C2×D4, D10, C4×S3, C22×S3, C2×C22⋊C4, C4×D5, C22×D5, S3×C2×C4, S3×D4, S3×D5, C2×C4×D5, D4×D5, S3×C22⋊C4, C2×S3×D5, D5×C22⋊C4, C4×S3×D5, C20⋊D6, D10⋊D6, D30.27D4

Smallest permutation representation of D30.27D4
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 30)(2 29)(3 28)(4 27)(5 26)(6 25)(7 24)(8 23)(9 22)(10 21)(11 20)(12 19)(13 18)(14 17)(15 16)(31 56)(32 55)(33 54)(34 53)(35 52)(36 51)(37 50)(38 49)(39 48)(40 47)(41 46)(42 45)(43 44)(57 60)(58 59)(61 70)(62 69)(63 68)(64 67)(65 66)(71 90)(72 89)(73 88)(74 87)(75 86)(76 85)(77 84)(78 83)(79 82)(80 81)(91 100)(92 99)(93 98)(94 97)(95 96)(101 120)(102 119)(103 118)(104 117)(105 116)(106 115)(107 114)(108 113)(109 112)(110 111)
(1 66 59 111)(2 67 60 112)(3 68 31 113)(4 69 32 114)(5 70 33 115)(6 71 34 116)(7 72 35 117)(8 73 36 118)(9 74 37 119)(10 75 38 120)(11 76 39 91)(12 77 40 92)(13 78 41 93)(14 79 42 94)(15 80 43 95)(16 81 44 96)(17 82 45 97)(18 83 46 98)(19 84 47 99)(20 85 48 100)(21 86 49 101)(22 87 50 102)(23 88 51 103)(24 89 52 104)(25 90 53 105)(26 61 54 106)(27 62 55 107)(28 63 56 108)(29 64 57 109)(30 65 58 110)
(1 96 16 111)(2 107 17 92)(3 118 18 103)(4 99 19 114)(5 110 20 95)(6 91 21 106)(7 102 22 117)(8 113 23 98)(9 94 24 109)(10 105 25 120)(11 116 26 101)(12 97 27 112)(13 108 28 93)(14 119 29 104)(15 100 30 115)(31 73 46 88)(32 84 47 69)(33 65 48 80)(34 76 49 61)(35 87 50 72)(36 68 51 83)(37 79 52 64)(38 90 53 75)(39 71 54 86)(40 82 55 67)(41 63 56 78)(42 74 57 89)(43 85 58 70)(44 66 59 81)(45 77 60 62)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,18)(14,17)(15,16)(31,56)(32,55)(33,54)(34,53)(35,52)(36,51)(37,50)(38,49)(39,48)(40,47)(41,46)(42,45)(43,44)(57,60)(58,59)(61,70)(62,69)(63,68)(64,67)(65,66)(71,90)(72,89)(73,88)(74,87)(75,86)(76,85)(77,84)(78,83)(79,82)(80,81)(91,100)(92,99)(93,98)(94,97)(95,96)(101,120)(102,119)(103,118)(104,117)(105,116)(106,115)(107,114)(108,113)(109,112)(110,111), (1,66,59,111)(2,67,60,112)(3,68,31,113)(4,69,32,114)(5,70,33,115)(6,71,34,116)(7,72,35,117)(8,73,36,118)(9,74,37,119)(10,75,38,120)(11,76,39,91)(12,77,40,92)(13,78,41,93)(14,79,42,94)(15,80,43,95)(16,81,44,96)(17,82,45,97)(18,83,46,98)(19,84,47,99)(20,85,48,100)(21,86,49,101)(22,87,50,102)(23,88,51,103)(24,89,52,104)(25,90,53,105)(26,61,54,106)(27,62,55,107)(28,63,56,108)(29,64,57,109)(30,65,58,110), (1,96,16,111)(2,107,17,92)(3,118,18,103)(4,99,19,114)(5,110,20,95)(6,91,21,106)(7,102,22,117)(8,113,23,98)(9,94,24,109)(10,105,25,120)(11,116,26,101)(12,97,27,112)(13,108,28,93)(14,119,29,104)(15,100,30,115)(31,73,46,88)(32,84,47,69)(33,65,48,80)(34,76,49,61)(35,87,50,72)(36,68,51,83)(37,79,52,64)(38,90,53,75)(39,71,54,86)(40,82,55,67)(41,63,56,78)(42,74,57,89)(43,85,58,70)(44,66,59,81)(45,77,60,62)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,18)(14,17)(15,16)(31,56)(32,55)(33,54)(34,53)(35,52)(36,51)(37,50)(38,49)(39,48)(40,47)(41,46)(42,45)(43,44)(57,60)(58,59)(61,70)(62,69)(63,68)(64,67)(65,66)(71,90)(72,89)(73,88)(74,87)(75,86)(76,85)(77,84)(78,83)(79,82)(80,81)(91,100)(92,99)(93,98)(94,97)(95,96)(101,120)(102,119)(103,118)(104,117)(105,116)(106,115)(107,114)(108,113)(109,112)(110,111), (1,66,59,111)(2,67,60,112)(3,68,31,113)(4,69,32,114)(5,70,33,115)(6,71,34,116)(7,72,35,117)(8,73,36,118)(9,74,37,119)(10,75,38,120)(11,76,39,91)(12,77,40,92)(13,78,41,93)(14,79,42,94)(15,80,43,95)(16,81,44,96)(17,82,45,97)(18,83,46,98)(19,84,47,99)(20,85,48,100)(21,86,49,101)(22,87,50,102)(23,88,51,103)(24,89,52,104)(25,90,53,105)(26,61,54,106)(27,62,55,107)(28,63,56,108)(29,64,57,109)(30,65,58,110), (1,96,16,111)(2,107,17,92)(3,118,18,103)(4,99,19,114)(5,110,20,95)(6,91,21,106)(7,102,22,117)(8,113,23,98)(9,94,24,109)(10,105,25,120)(11,116,26,101)(12,97,27,112)(13,108,28,93)(14,119,29,104)(15,100,30,115)(31,73,46,88)(32,84,47,69)(33,65,48,80)(34,76,49,61)(35,87,50,72)(36,68,51,83)(37,79,52,64)(38,90,53,75)(39,71,54,86)(40,82,55,67)(41,63,56,78)(42,74,57,89)(43,85,58,70)(44,66,59,81)(45,77,60,62) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,30),(2,29),(3,28),(4,27),(5,26),(6,25),(7,24),(8,23),(9,22),(10,21),(11,20),(12,19),(13,18),(14,17),(15,16),(31,56),(32,55),(33,54),(34,53),(35,52),(36,51),(37,50),(38,49),(39,48),(40,47),(41,46),(42,45),(43,44),(57,60),(58,59),(61,70),(62,69),(63,68),(64,67),(65,66),(71,90),(72,89),(73,88),(74,87),(75,86),(76,85),(77,84),(78,83),(79,82),(80,81),(91,100),(92,99),(93,98),(94,97),(95,96),(101,120),(102,119),(103,118),(104,117),(105,116),(106,115),(107,114),(108,113),(109,112),(110,111)], [(1,66,59,111),(2,67,60,112),(3,68,31,113),(4,69,32,114),(5,70,33,115),(6,71,34,116),(7,72,35,117),(8,73,36,118),(9,74,37,119),(10,75,38,120),(11,76,39,91),(12,77,40,92),(13,78,41,93),(14,79,42,94),(15,80,43,95),(16,81,44,96),(17,82,45,97),(18,83,46,98),(19,84,47,99),(20,85,48,100),(21,86,49,101),(22,87,50,102),(23,88,51,103),(24,89,52,104),(25,90,53,105),(26,61,54,106),(27,62,55,107),(28,63,56,108),(29,64,57,109),(30,65,58,110)], [(1,96,16,111),(2,107,17,92),(3,118,18,103),(4,99,19,114),(5,110,20,95),(6,91,21,106),(7,102,22,117),(8,113,23,98),(9,94,24,109),(10,105,25,120),(11,116,26,101),(12,97,27,112),(13,108,28,93),(14,119,29,104),(15,100,30,115),(31,73,46,88),(32,84,47,69),(33,65,48,80),(34,76,49,61),(35,87,50,72),(36,68,51,83),(37,79,52,64),(38,90,53,75),(39,71,54,86),(40,82,55,67),(41,63,56,78),(42,74,57,89),(43,85,58,70),(44,66,59,81),(45,77,60,62)]])

66 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K 3 4A4B4C4D4E4F4G4H5A5B6A6B6C6D6E10A···10F10G10H10I10J12A12B12C12D15A15B20A20B20C20D20E20F20G20H30A···30F60A···60H
order122222222222344444444556666610···1010101010121212121515202020202020202030···3060···60
size11116610101515151522266101030302222220202···212121212442020444444121212124···44···4

66 irreducible representations

dim111111111222222222224444444
type++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C4S3D4D5D6D6D6D10D10D10C4×S3C4×D5S3×D4S3×D5D4×D5C2×S3×D5C4×S3×D5C20⋊D6D10⋊D6
kernelD30.27D4D10⋊Dic3D6⋊Dic5C3×D10⋊C4C5×D6⋊C4C2×D30.C2C2×C4×D15C22×S3×D5C2×S3×D5D10⋊C4D30D6⋊C4C2×Dic5C2×C20C22×D5C2×Dic3C2×C12C22×S3D10D6C10C2×C4C6C22C2C2C2
# reps111111118142111222482242444

Matrix representation of D30.27D4 in GL6(𝔽61)

60150000
1220000
00606000
00191800
0000600
0000060
,
60150000
010000
0001700
0018000
0000600
0000060
,
5000000
0500000
0060000
0006000
0000120
0000060
,
5000000
10110000
0060000
0006000
0000120
0000660

G:=sub<GL(6,GF(61))| [60,12,0,0,0,0,15,2,0,0,0,0,0,0,60,19,0,0,0,0,60,18,0,0,0,0,0,0,60,0,0,0,0,0,0,60],[60,0,0,0,0,0,15,1,0,0,0,0,0,0,0,18,0,0,0,0,17,0,0,0,0,0,0,0,60,0,0,0,0,0,0,60],[50,0,0,0,0,0,0,50,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,1,0,0,0,0,0,20,60],[50,10,0,0,0,0,0,11,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,1,6,0,0,0,0,20,60] >;

D30.27D4 in GAP, Magma, Sage, TeX

D_{30}._{27}D_4
% in TeX

G:=Group("D30.27D4");
// GroupNames label

G:=SmallGroup(480,549);
// by ID

G=gap.SmallGroup(480,549);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,422,219,58,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^30=b^2=c^4=1,d^2=a^15,b*a*b=a^-1,a*c=c*a,d*a*d^-1=a^11,b*c=c*b,d*b*d^-1=a^10*b,d*c*d^-1=a^15*c^-1>;
// generators/relations

׿
×
𝔽