Extensions 1→N→G→Q→1 with N=C10×A4 and Q=C4

Direct product G=N×Q with N=C10×A4 and Q=C4
dρLabelID
A4×C2×C20120A4xC2xC20480,1126

Semidirect products G=N:Q with N=C10×A4 and Q=C4
extensionφ:Q→Out NdρLabelID
(C10×A4)⋊1C4 = C2×A4⋊F5φ: C4/C1C4 ⊆ Out C10×A43012+(C10xA4):1C4480,1191
(C10×A4)⋊2C4 = C2×A4×F5φ: C4/C1C4 ⊆ Out C10×A43012+(C10xA4):2C4480,1192
(C10×A4)⋊3C4 = C2×A4⋊Dic5φ: C4/C2C2 ⊆ Out C10×A4120(C10xA4):3C4480,1033
(C10×A4)⋊4C4 = C2×A4×Dic5φ: C4/C2C2 ⊆ Out C10×A4120(C10xA4):4C4480,1044
(C10×A4)⋊5C4 = C10×A4⋊C4φ: C4/C2C2 ⊆ Out C10×A4120(C10xA4):5C4480,1022

Non-split extensions G=N.Q with N=C10×A4 and Q=C4
extensionφ:Q→Out NdρLabelID
(C10×A4).1C4 = Dic5.S4φ: C4/C1C4 ⊆ Out C10×A412012-(C10xA4).1C4480,963
(C10×A4).2C4 = A4×C5⋊C8φ: C4/C1C4 ⊆ Out C10×A412012-(C10xA4).2C4480,966
(C10×A4).3C4 = C20.S4φ: C4/C2C2 ⊆ Out C10×A41206(C10xA4).3C4480,259
(C10×A4).4C4 = A4×C52C8φ: C4/C2C2 ⊆ Out C10×A41206(C10xA4).4C4480,265
(C10×A4).5C4 = C5×A4⋊C8φ: C4/C2C2 ⊆ Out C10×A41203(C10xA4).5C4480,255
(C10×A4).6C4 = A4×C40φ: trivial image1203(C10xA4).6C4480,659

׿
×
𝔽