# Extensions 1→N→G→Q→1 with N=C10 and Q=C22×A4

Direct product G=N×Q with N=C10 and Q=C22×A4
dρLabelID
A4×C22×C10120A4xC2^2xC10480,1208

Semidirect products G=N:Q with N=C10 and Q=C22×A4
extensionφ:Q→Aut NdρLabelID
C10⋊(C22×A4) = C22×D5×A4φ: C22×A4/C2×A4C2 ⊆ Aut C1060C10:(C2^2xA4)480,1202

Non-split extensions G=N.Q with N=C10 and Q=C22×A4
extensionφ:Q→Aut NdρLabelID
C10.1(C22×A4) = A4×Dic10φ: C22×A4/C2×A4C2 ⊆ Aut C101206-C10.1(C2^2xA4)480,1035
C10.2(C22×A4) = C4×D5×A4φ: C22×A4/C2×A4C2 ⊆ Aut C10606C10.2(C2^2xA4)480,1036
C10.3(C22×A4) = A4×D20φ: C22×A4/C2×A4C2 ⊆ Aut C10606+C10.3(C2^2xA4)480,1037
C10.4(C22×A4) = C2×Dic5.A4φ: C22×A4/C2×A4C2 ⊆ Aut C10160C10.4(C2^2xA4)480,1038
C10.5(C22×A4) = C2×D5×SL2(𝔽3)φ: C22×A4/C2×A4C2 ⊆ Aut C1080C10.5(C2^2xA4)480,1039
C10.6(C22×A4) = SL2(𝔽3).11D10φ: C22×A4/C2×A4C2 ⊆ Aut C10804C10.6(C2^2xA4)480,1040
C10.7(C22×A4) = Dic10.A4φ: C22×A4/C2×A4C2 ⊆ Aut C101204+C10.7(C2^2xA4)480,1041
C10.8(C22×A4) = D5×C4.A4φ: C22×A4/C2×A4C2 ⊆ Aut C10804C10.8(C2^2xA4)480,1042
C10.9(C22×A4) = D20.A4φ: C22×A4/C2×A4C2 ⊆ Aut C10804-C10.9(C2^2xA4)480,1043
C10.10(C22×A4) = C2×A4×Dic5φ: C22×A4/C2×A4C2 ⊆ Aut C10120C10.10(C2^2xA4)480,1044
C10.11(C22×A4) = A4×C5⋊D4φ: C22×A4/C2×A4C2 ⊆ Aut C10606C10.11(C2^2xA4)480,1045
C10.12(C22×A4) = A4×C2×C20central extension (φ=1)120C10.12(C2^2xA4)480,1126
C10.13(C22×A4) = C5×D4×A4central extension (φ=1)606C10.13(C2^2xA4)480,1127
C10.14(C22×A4) = C2×C10×SL2(𝔽3)central extension (φ=1)160C10.14(C2^2xA4)480,1128
C10.15(C22×A4) = C5×Q8×A4central extension (φ=1)1206C10.15(C2^2xA4)480,1129
C10.16(C22×A4) = C10×C4.A4central extension (φ=1)160C10.16(C2^2xA4)480,1130
C10.17(C22×A4) = C5×Q8.A4central extension (φ=1)1204C10.17(C2^2xA4)480,1131
C10.18(C22×A4) = C5×D4.A4central extension (φ=1)804C10.18(C2^2xA4)480,1132

׿
×
𝔽