Copied to
clipboard

G = D20.A4order 480 = 25·3·5

The non-split extension by D20 of A4 acting through Inn(D20)

non-abelian, soluble

Aliases: D20.A4, SL2(𝔽3).12D10, C4.A44D5, (Q8×D5)⋊2C6, C4.3(D5×A4), C20.3(C2×A4), C52(D4.A4), Q8.5(C6×D5), D4.10D10⋊C3, D10.2(C2×A4), C10.9(C22×A4), (D5×SL2(𝔽3))⋊5C2, (C5×SL2(𝔽3)).12C22, C4○D4⋊(C3×D5), C2.10(C2×D5×A4), (C5×C4○D4)⋊2C6, (C5×C4.A4)⋊4C2, (C5×Q8).5(C2×C6), SmallGroup(480,1043)

Series: Derived Chief Lower central Upper central

C1C2C5×Q8 — D20.A4
C1C2C10C5×Q8C5×SL2(𝔽3)D5×SL2(𝔽3) — D20.A4
C5×Q8 — D20.A4
C1C2C4

Generators and relations for D20.A4
 G = < a,b,c,d,e | a20=b2=e3=1, c2=d2=a10, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=a10c, ece-1=a10cd, ede-1=c >

Subgroups: 590 in 92 conjugacy classes, 23 normal (17 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, C6, C2×C4, D4, Q8, Q8, D5, C10, C10, C12, C2×C6, C15, C2×Q8, C4○D4, C4○D4, Dic5, C20, C20, D10, C2×C10, SL2(𝔽3), C3×D4, C3×D5, C30, 2- 1+4, Dic10, C4×D5, D20, C2×Dic5, C5⋊D4, C2×C20, C5×D4, C5×Q8, C2×SL2(𝔽3), C4.A4, C60, C6×D5, C2×Dic10, C4○D20, D42D5, Q8×D5, C5×C4○D4, D4.A4, C5×SL2(𝔽3), C3×D20, D4.10D10, D5×SL2(𝔽3), C5×C4.A4, D20.A4
Quotients: C1, C2, C3, C22, C6, D5, A4, C2×C6, D10, C2×A4, C3×D5, C22×A4, C6×D5, D4.A4, D5×A4, C2×D5×A4, D20.A4

Smallest permutation representation of D20.A4
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 20)(17 19)(21 39)(22 38)(23 37)(24 36)(25 35)(26 34)(27 33)(28 32)(29 31)(41 59)(42 58)(43 57)(44 56)(45 55)(46 54)(47 53)(48 52)(49 51)(61 79)(62 78)(63 77)(64 76)(65 75)(66 74)(67 73)(68 72)(69 71)
(1 23 11 33)(2 24 12 34)(3 25 13 35)(4 26 14 36)(5 27 15 37)(6 28 16 38)(7 29 17 39)(8 30 18 40)(9 31 19 21)(10 32 20 22)(41 71 51 61)(42 72 52 62)(43 73 53 63)(44 74 54 64)(45 75 55 65)(46 76 56 66)(47 77 57 67)(48 78 58 68)(49 79 59 69)(50 80 60 70)
(1 43 11 53)(2 44 12 54)(3 45 13 55)(4 46 14 56)(5 47 15 57)(6 48 16 58)(7 49 17 59)(8 50 18 60)(9 51 19 41)(10 52 20 42)(21 61 31 71)(22 62 32 72)(23 63 33 73)(24 64 34 74)(25 65 35 75)(26 66 36 76)(27 67 37 77)(28 68 38 78)(29 69 39 79)(30 70 40 80)
(21 41 71)(22 42 72)(23 43 73)(24 44 74)(25 45 75)(26 46 76)(27 47 77)(28 48 78)(29 49 79)(30 50 80)(31 51 61)(32 52 62)(33 53 63)(34 54 64)(35 55 65)(36 56 66)(37 57 67)(38 58 68)(39 59 69)(40 60 70)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,39)(22,38)(23,37)(24,36)(25,35)(26,34)(27,33)(28,32)(29,31)(41,59)(42,58)(43,57)(44,56)(45,55)(46,54)(47,53)(48,52)(49,51)(61,79)(62,78)(63,77)(64,76)(65,75)(66,74)(67,73)(68,72)(69,71), (1,23,11,33)(2,24,12,34)(3,25,13,35)(4,26,14,36)(5,27,15,37)(6,28,16,38)(7,29,17,39)(8,30,18,40)(9,31,19,21)(10,32,20,22)(41,71,51,61)(42,72,52,62)(43,73,53,63)(44,74,54,64)(45,75,55,65)(46,76,56,66)(47,77,57,67)(48,78,58,68)(49,79,59,69)(50,80,60,70), (1,43,11,53)(2,44,12,54)(3,45,13,55)(4,46,14,56)(5,47,15,57)(6,48,16,58)(7,49,17,59)(8,50,18,60)(9,51,19,41)(10,52,20,42)(21,61,31,71)(22,62,32,72)(23,63,33,73)(24,64,34,74)(25,65,35,75)(26,66,36,76)(27,67,37,77)(28,68,38,78)(29,69,39,79)(30,70,40,80), (21,41,71)(22,42,72)(23,43,73)(24,44,74)(25,45,75)(26,46,76)(27,47,77)(28,48,78)(29,49,79)(30,50,80)(31,51,61)(32,52,62)(33,53,63)(34,54,64)(35,55,65)(36,56,66)(37,57,67)(38,58,68)(39,59,69)(40,60,70)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,39)(22,38)(23,37)(24,36)(25,35)(26,34)(27,33)(28,32)(29,31)(41,59)(42,58)(43,57)(44,56)(45,55)(46,54)(47,53)(48,52)(49,51)(61,79)(62,78)(63,77)(64,76)(65,75)(66,74)(67,73)(68,72)(69,71), (1,23,11,33)(2,24,12,34)(3,25,13,35)(4,26,14,36)(5,27,15,37)(6,28,16,38)(7,29,17,39)(8,30,18,40)(9,31,19,21)(10,32,20,22)(41,71,51,61)(42,72,52,62)(43,73,53,63)(44,74,54,64)(45,75,55,65)(46,76,56,66)(47,77,57,67)(48,78,58,68)(49,79,59,69)(50,80,60,70), (1,43,11,53)(2,44,12,54)(3,45,13,55)(4,46,14,56)(5,47,15,57)(6,48,16,58)(7,49,17,59)(8,50,18,60)(9,51,19,41)(10,52,20,42)(21,61,31,71)(22,62,32,72)(23,63,33,73)(24,64,34,74)(25,65,35,75)(26,66,36,76)(27,67,37,77)(28,68,38,78)(29,69,39,79)(30,70,40,80), (21,41,71)(22,42,72)(23,43,73)(24,44,74)(25,45,75)(26,46,76)(27,47,77)(28,48,78)(29,49,79)(30,50,80)(31,51,61)(32,52,62)(33,53,63)(34,54,64)(35,55,65)(36,56,66)(37,57,67)(38,58,68)(39,59,69)(40,60,70) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,20),(17,19),(21,39),(22,38),(23,37),(24,36),(25,35),(26,34),(27,33),(28,32),(29,31),(41,59),(42,58),(43,57),(44,56),(45,55),(46,54),(47,53),(48,52),(49,51),(61,79),(62,78),(63,77),(64,76),(65,75),(66,74),(67,73),(68,72),(69,71)], [(1,23,11,33),(2,24,12,34),(3,25,13,35),(4,26,14,36),(5,27,15,37),(6,28,16,38),(7,29,17,39),(8,30,18,40),(9,31,19,21),(10,32,20,22),(41,71,51,61),(42,72,52,62),(43,73,53,63),(44,74,54,64),(45,75,55,65),(46,76,56,66),(47,77,57,67),(48,78,58,68),(49,79,59,69),(50,80,60,70)], [(1,43,11,53),(2,44,12,54),(3,45,13,55),(4,46,14,56),(5,47,15,57),(6,48,16,58),(7,49,17,59),(8,50,18,60),(9,51,19,41),(10,52,20,42),(21,61,31,71),(22,62,32,72),(23,63,33,73),(24,64,34,74),(25,65,35,75),(26,66,36,76),(27,67,37,77),(28,68,38,78),(29,69,39,79),(30,70,40,80)], [(21,41,71),(22,42,72),(23,43,73),(24,44,74),(25,45,75),(26,46,76),(27,47,77),(28,48,78),(29,49,79),(30,50,80),(31,51,61),(32,52,62),(33,53,63),(34,54,64),(35,55,65),(36,56,66),(37,57,67),(38,58,68),(39,59,69),(40,60,70)]])

47 conjugacy classes

class 1 2A2B2C2D3A3B4A4B4C4D5A5B6A6B6C6D6E6F10A10B10C10D12A12B15A15B15C15D20A20B20C20D20E20F30A30B30C30D60A···60H
order1222233444455666666101010101212151515152020202020203030303060···60
size1161010442630302244404040402212128888882222121288888···8

47 irreducible representations

dim1111112222333444466
type++++++++--++
imageC1C2C2C3C6C6D5D10C3×D5C6×D5A4C2×A4C2×A4D4.A4D4.A4D20.A4D20.A4D5×A4C2×D5×A4
kernelD20.A4D5×SL2(𝔽3)C5×C4.A4D4.10D10Q8×D5C5×C4○D4C4.A4SL2(𝔽3)C4○D4Q8D20C20D10C5C5C1C1C4C2
# reps1212422244112124822

Matrix representation of D20.A4 in GL4(𝔽61) generated by

542900
325900
005429
003259
,
06000
60000
00060
00600
,
0010
0001
60000
06000
,
480470
048047
470130
047013
,
1000
0100
470130
047013
G:=sub<GL(4,GF(61))| [54,32,0,0,29,59,0,0,0,0,54,32,0,0,29,59],[0,60,0,0,60,0,0,0,0,0,0,60,0,0,60,0],[0,0,60,0,0,0,0,60,1,0,0,0,0,1,0,0],[48,0,47,0,0,48,0,47,47,0,13,0,0,47,0,13],[1,0,47,0,0,1,0,47,0,0,13,0,0,0,0,13] >;

D20.A4 in GAP, Magma, Sage, TeX

D_{20}.A_4
% in TeX

G:=Group("D20.A4");
// GroupNames label

G:=SmallGroup(480,1043);
// by ID

G=gap.SmallGroup(480,1043);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,2,-5,-2,3389,1688,269,584,123,795,382,8069]);
// Polycyclic

G:=Group<a,b,c,d,e|a^20=b^2=e^3=1,c^2=d^2=a^10,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=a^10*c,e*c*e^-1=a^10*c*d,e*d*e^-1=c>;
// generators/relations

׿
×
𝔽