Copied to
clipboard

G = Dic10.A4order 480 = 25·3·5

The non-split extension by Dic10 of A4 acting through Inn(Dic10)

non-abelian, soluble

Aliases: Dic10.A4, SL2(𝔽3)⋊6D10, C5⋊(Q8.A4), D48D10⋊C3, C4.A43D5, C4.2(D5×A4), C20.2(C2×A4), Q8.3(C6×D5), Dic5.A45C2, C10.7(C22×A4), Q82D5.1C6, Dic5.3(C2×A4), (C5×SL2(𝔽3))⋊7C22, C2.8(C2×D5×A4), C4○D4.(C3×D5), (C5×C4.A4)⋊3C2, (C5×C4○D4).2C6, (C5×Q8).3(C2×C6), SmallGroup(480,1041)

Series: Derived Chief Lower central Upper central

C1C2C5×Q8 — Dic10.A4
C1C2C10C5×Q8C5×SL2(𝔽3)Dic5.A4 — Dic10.A4
C5×Q8 — Dic10.A4
C1C2C4

Generators and relations for Dic10.A4
 G = < a,b,c,d,e | a20=e3=1, b2=c2=d2=a10, bab-1=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=a10c, ece-1=a10cd, ede-1=c >

Subgroups: 686 in 92 conjugacy classes, 23 normal (17 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, C6, C2×C4, D4, Q8, Q8, C23, D5, C10, C10, C12, C15, C2×D4, C4○D4, C4○D4, Dic5, C20, C20, D10, C2×C10, SL2(𝔽3), C3×Q8, C30, 2+ 1+4, Dic10, C4×D5, D20, C5⋊D4, C2×C20, C5×D4, C5×Q8, C22×D5, C4.A4, C4.A4, C3×Dic5, C60, C2×D20, C4○D20, D4×D5, Q82D5, C5×C4○D4, Q8.A4, C5×SL2(𝔽3), C3×Dic10, D48D10, Dic5.A4, C5×C4.A4, Dic10.A4
Quotients: C1, C2, C3, C22, C6, D5, A4, C2×C6, D10, C2×A4, C3×D5, C22×A4, C6×D5, Q8.A4, D5×A4, C2×D5×A4, Dic10.A4

Smallest permutation representation of Dic10.A4
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 48 11 58)(2 47 12 57)(3 46 13 56)(4 45 14 55)(5 44 15 54)(6 43 16 53)(7 42 17 52)(8 41 18 51)(9 60 19 50)(10 59 20 49)(21 77 31 67)(22 76 32 66)(23 75 33 65)(24 74 34 64)(25 73 35 63)(26 72 36 62)(27 71 37 61)(28 70 38 80)(29 69 39 79)(30 68 40 78)(81 105 91 115)(82 104 92 114)(83 103 93 113)(84 102 94 112)(85 101 95 111)(86 120 96 110)(87 119 97 109)(88 118 98 108)(89 117 99 107)(90 116 100 106)
(1 58 11 48)(2 59 12 49)(3 60 13 50)(4 41 14 51)(5 42 15 52)(6 43 16 53)(7 44 17 54)(8 45 18 55)(9 46 19 56)(10 47 20 57)(21 36 31 26)(22 37 32 27)(23 38 33 28)(24 39 34 29)(25 40 35 30)(61 66 71 76)(62 67 72 77)(63 68 73 78)(64 69 74 79)(65 70 75 80)(81 118 91 108)(82 119 92 109)(83 120 93 110)(84 101 94 111)(85 102 95 112)(86 103 96 113)(87 104 97 114)(88 105 98 115)(89 106 99 116)(90 107 100 117)
(1 6 11 16)(2 7 12 17)(3 8 13 18)(4 9 14 19)(5 10 15 20)(21 70 31 80)(22 71 32 61)(23 72 33 62)(24 73 34 63)(25 74 35 64)(26 75 36 65)(27 76 37 66)(28 77 38 67)(29 78 39 68)(30 79 40 69)(41 56 51 46)(42 57 52 47)(43 58 53 48)(44 59 54 49)(45 60 55 50)(81 103 91 113)(82 104 92 114)(83 105 93 115)(84 106 94 116)(85 107 95 117)(86 108 96 118)(87 109 97 119)(88 110 98 120)(89 111 99 101)(90 112 100 102)
(1 109 71)(2 110 72)(3 111 73)(4 112 74)(5 113 75)(6 114 76)(7 115 77)(8 116 78)(9 117 79)(10 118 80)(11 119 61)(12 120 62)(13 101 63)(14 102 64)(15 103 65)(16 104 66)(17 105 67)(18 106 68)(19 107 69)(20 108 70)(21 52 91)(22 53 92)(23 54 93)(24 55 94)(25 56 95)(26 57 96)(27 58 97)(28 59 98)(29 60 99)(30 41 100)(31 42 81)(32 43 82)(33 44 83)(34 45 84)(35 46 85)(36 47 86)(37 48 87)(38 49 88)(39 50 89)(40 51 90)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,48,11,58)(2,47,12,57)(3,46,13,56)(4,45,14,55)(5,44,15,54)(6,43,16,53)(7,42,17,52)(8,41,18,51)(9,60,19,50)(10,59,20,49)(21,77,31,67)(22,76,32,66)(23,75,33,65)(24,74,34,64)(25,73,35,63)(26,72,36,62)(27,71,37,61)(28,70,38,80)(29,69,39,79)(30,68,40,78)(81,105,91,115)(82,104,92,114)(83,103,93,113)(84,102,94,112)(85,101,95,111)(86,120,96,110)(87,119,97,109)(88,118,98,108)(89,117,99,107)(90,116,100,106), (1,58,11,48)(2,59,12,49)(3,60,13,50)(4,41,14,51)(5,42,15,52)(6,43,16,53)(7,44,17,54)(8,45,18,55)(9,46,19,56)(10,47,20,57)(21,36,31,26)(22,37,32,27)(23,38,33,28)(24,39,34,29)(25,40,35,30)(61,66,71,76)(62,67,72,77)(63,68,73,78)(64,69,74,79)(65,70,75,80)(81,118,91,108)(82,119,92,109)(83,120,93,110)(84,101,94,111)(85,102,95,112)(86,103,96,113)(87,104,97,114)(88,105,98,115)(89,106,99,116)(90,107,100,117), (1,6,11,16)(2,7,12,17)(3,8,13,18)(4,9,14,19)(5,10,15,20)(21,70,31,80)(22,71,32,61)(23,72,33,62)(24,73,34,63)(25,74,35,64)(26,75,36,65)(27,76,37,66)(28,77,38,67)(29,78,39,68)(30,79,40,69)(41,56,51,46)(42,57,52,47)(43,58,53,48)(44,59,54,49)(45,60,55,50)(81,103,91,113)(82,104,92,114)(83,105,93,115)(84,106,94,116)(85,107,95,117)(86,108,96,118)(87,109,97,119)(88,110,98,120)(89,111,99,101)(90,112,100,102), (1,109,71)(2,110,72)(3,111,73)(4,112,74)(5,113,75)(6,114,76)(7,115,77)(8,116,78)(9,117,79)(10,118,80)(11,119,61)(12,120,62)(13,101,63)(14,102,64)(15,103,65)(16,104,66)(17,105,67)(18,106,68)(19,107,69)(20,108,70)(21,52,91)(22,53,92)(23,54,93)(24,55,94)(25,56,95)(26,57,96)(27,58,97)(28,59,98)(29,60,99)(30,41,100)(31,42,81)(32,43,82)(33,44,83)(34,45,84)(35,46,85)(36,47,86)(37,48,87)(38,49,88)(39,50,89)(40,51,90)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,48,11,58)(2,47,12,57)(3,46,13,56)(4,45,14,55)(5,44,15,54)(6,43,16,53)(7,42,17,52)(8,41,18,51)(9,60,19,50)(10,59,20,49)(21,77,31,67)(22,76,32,66)(23,75,33,65)(24,74,34,64)(25,73,35,63)(26,72,36,62)(27,71,37,61)(28,70,38,80)(29,69,39,79)(30,68,40,78)(81,105,91,115)(82,104,92,114)(83,103,93,113)(84,102,94,112)(85,101,95,111)(86,120,96,110)(87,119,97,109)(88,118,98,108)(89,117,99,107)(90,116,100,106), (1,58,11,48)(2,59,12,49)(3,60,13,50)(4,41,14,51)(5,42,15,52)(6,43,16,53)(7,44,17,54)(8,45,18,55)(9,46,19,56)(10,47,20,57)(21,36,31,26)(22,37,32,27)(23,38,33,28)(24,39,34,29)(25,40,35,30)(61,66,71,76)(62,67,72,77)(63,68,73,78)(64,69,74,79)(65,70,75,80)(81,118,91,108)(82,119,92,109)(83,120,93,110)(84,101,94,111)(85,102,95,112)(86,103,96,113)(87,104,97,114)(88,105,98,115)(89,106,99,116)(90,107,100,117), (1,6,11,16)(2,7,12,17)(3,8,13,18)(4,9,14,19)(5,10,15,20)(21,70,31,80)(22,71,32,61)(23,72,33,62)(24,73,34,63)(25,74,35,64)(26,75,36,65)(27,76,37,66)(28,77,38,67)(29,78,39,68)(30,79,40,69)(41,56,51,46)(42,57,52,47)(43,58,53,48)(44,59,54,49)(45,60,55,50)(81,103,91,113)(82,104,92,114)(83,105,93,115)(84,106,94,116)(85,107,95,117)(86,108,96,118)(87,109,97,119)(88,110,98,120)(89,111,99,101)(90,112,100,102), (1,109,71)(2,110,72)(3,111,73)(4,112,74)(5,113,75)(6,114,76)(7,115,77)(8,116,78)(9,117,79)(10,118,80)(11,119,61)(12,120,62)(13,101,63)(14,102,64)(15,103,65)(16,104,66)(17,105,67)(18,106,68)(19,107,69)(20,108,70)(21,52,91)(22,53,92)(23,54,93)(24,55,94)(25,56,95)(26,57,96)(27,58,97)(28,59,98)(29,60,99)(30,41,100)(31,42,81)(32,43,82)(33,44,83)(34,45,84)(35,46,85)(36,47,86)(37,48,87)(38,49,88)(39,50,89)(40,51,90) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,48,11,58),(2,47,12,57),(3,46,13,56),(4,45,14,55),(5,44,15,54),(6,43,16,53),(7,42,17,52),(8,41,18,51),(9,60,19,50),(10,59,20,49),(21,77,31,67),(22,76,32,66),(23,75,33,65),(24,74,34,64),(25,73,35,63),(26,72,36,62),(27,71,37,61),(28,70,38,80),(29,69,39,79),(30,68,40,78),(81,105,91,115),(82,104,92,114),(83,103,93,113),(84,102,94,112),(85,101,95,111),(86,120,96,110),(87,119,97,109),(88,118,98,108),(89,117,99,107),(90,116,100,106)], [(1,58,11,48),(2,59,12,49),(3,60,13,50),(4,41,14,51),(5,42,15,52),(6,43,16,53),(7,44,17,54),(8,45,18,55),(9,46,19,56),(10,47,20,57),(21,36,31,26),(22,37,32,27),(23,38,33,28),(24,39,34,29),(25,40,35,30),(61,66,71,76),(62,67,72,77),(63,68,73,78),(64,69,74,79),(65,70,75,80),(81,118,91,108),(82,119,92,109),(83,120,93,110),(84,101,94,111),(85,102,95,112),(86,103,96,113),(87,104,97,114),(88,105,98,115),(89,106,99,116),(90,107,100,117)], [(1,6,11,16),(2,7,12,17),(3,8,13,18),(4,9,14,19),(5,10,15,20),(21,70,31,80),(22,71,32,61),(23,72,33,62),(24,73,34,63),(25,74,35,64),(26,75,36,65),(27,76,37,66),(28,77,38,67),(29,78,39,68),(30,79,40,69),(41,56,51,46),(42,57,52,47),(43,58,53,48),(44,59,54,49),(45,60,55,50),(81,103,91,113),(82,104,92,114),(83,105,93,115),(84,106,94,116),(85,107,95,117),(86,108,96,118),(87,109,97,119),(88,110,98,120),(89,111,99,101),(90,112,100,102)], [(1,109,71),(2,110,72),(3,111,73),(4,112,74),(5,113,75),(6,114,76),(7,115,77),(8,116,78),(9,117,79),(10,118,80),(11,119,61),(12,120,62),(13,101,63),(14,102,64),(15,103,65),(16,104,66),(17,105,67),(18,106,68),(19,107,69),(20,108,70),(21,52,91),(22,53,92),(23,54,93),(24,55,94),(25,56,95),(26,57,96),(27,58,97),(28,59,98),(29,60,99),(30,41,100),(31,42,81),(32,43,82),(33,44,83),(34,45,84),(35,46,85),(36,47,86),(37,48,87),(38,49,88),(39,50,89),(40,51,90)]])

47 conjugacy classes

class 1 2A2B2C2D3A3B4A4B4C4D5A5B6A6B10A10B10C10D12A12B12C12D12E12F15A15B15C15D20A20B20C20D20E20F30A30B30C30D60A···60H
order12222334444556610101010121212121212151515152020202020203030303060···60
size1163030442610102244221212884040404088882222121288888···8

47 irreducible representations

dim1111112222333444466
type++++++++++++
imageC1C2C2C3C6C6D5D10C3×D5C6×D5A4C2×A4C2×A4Q8.A4Q8.A4Dic10.A4Dic10.A4D5×A4C2×D5×A4
kernelDic10.A4Dic5.A4C5×C4.A4D48D10Q82D5C5×C4○D4C4.A4SL2(𝔽3)C4○D4Q8Dic10Dic5C20C5C5C1C1C4C2
# reps1212422244121124822

Matrix representation of Dic10.A4 in GL4(𝔽61) generated by

05000
503100
025236
5022729
,
4503436
5903216
45181718
30441660
,
10590
00171
10600
4460170
,
39800
82200
394294
054332
,
6057304
0191841
415700
43491841
G:=sub<GL(4,GF(61))| [0,50,0,50,50,31,25,2,0,0,2,27,0,0,36,29],[45,59,45,30,0,0,18,44,34,32,17,16,36,16,18,60],[1,0,1,44,0,0,0,60,59,17,60,17,0,1,0,0],[39,8,39,0,8,22,4,54,0,0,29,3,0,0,4,32],[60,0,41,43,57,19,57,49,30,18,0,18,4,41,0,41] >;

Dic10.A4 in GAP, Magma, Sage, TeX

{\rm Dic}_{10}.A_4
% in TeX

G:=Group("Dic10.A4");
// GroupNames label

G:=SmallGroup(480,1041);
// by ID

G=gap.SmallGroup(480,1041);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,2,-5,-2,1680,3389,1688,269,584,123,795,382,8069]);
// Polycyclic

G:=Group<a,b,c,d,e|a^20=e^3=1,b^2=c^2=d^2=a^10,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=a^10*c,e*c*e^-1=a^10*c*d,e*d*e^-1=c>;
// generators/relations

׿
×
𝔽