extension | φ:Q→Out N | d | ρ | Label | ID |
(D5×C2×C12)⋊1C2 = D5×C4○D12 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 120 | 4 | (D5xC2xC12):1C2 | 480,1090 |
(D5×C2×C12)⋊2C2 = C60⋊D4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12):2C2 | 480,525 |
(D5×C2×C12)⋊3C2 = C12⋊7D20 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12):3C2 | 480,526 |
(D5×C2×C12)⋊4C2 = C2×D12⋊5D5 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12):4C2 | 480,1084 |
(D5×C2×C12)⋊5C2 = C2×C12.28D10 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12):5C2 | 480,1085 |
(D5×C2×C12)⋊6C2 = C2×D5×D12 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 120 | | (D5xC2xC12):6C2 | 480,1087 |
(D5×C2×C12)⋊7C2 = C4×C15⋊D4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12):7C2 | 480,515 |
(D5×C2×C12)⋊8C2 = C4×C3⋊D20 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12):8C2 | 480,519 |
(D5×C2×C12)⋊9C2 = C2×D6.D10 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12):9C2 | 480,1083 |
(D5×C2×C12)⋊10C2 = S3×C2×C4×D5 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 120 | | (D5xC2xC12):10C2 | 480,1086 |
(D5×C2×C12)⋊11C2 = C3×C4⋊D20 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12):11C2 | 480,688 |
(D5×C2×C12)⋊12C2 = C3×C20⋊2D4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12):12C2 | 480,731 |
(D5×C2×C12)⋊13C2 = C6×D4×D5 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 120 | | (D5xC2xC12):13C2 | 480,1139 |
(D5×C2×C12)⋊14C2 = C6×D4⋊2D5 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12):14C2 | 480,1140 |
(D5×C2×C12)⋊15C2 = C6×Q8⋊2D5 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12):15C2 | 480,1143 |
(D5×C2×C12)⋊16C2 = C3×D5×C4○D4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 120 | 4 | (D5xC2xC12):16C2 | 480,1145 |
(D5×C2×C12)⋊17C2 = Dic3⋊C4⋊D5 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12):17C2 | 480,424 |
(D5×C2×C12)⋊18C2 = D6⋊(C4×D5) | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12):18C2 | 480,516 |
(D5×C2×C12)⋊19C2 = C15⋊20(C4×D4) | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12):19C2 | 480,520 |
(D5×C2×C12)⋊20C2 = D6⋊C4⋊D5 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12):20C2 | 480,523 |
(D5×C2×C12)⋊21C2 = D10⋊D12 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12):21C2 | 480,524 |
(D5×C2×C12)⋊22C2 = D5×D6⋊C4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 120 | | (D5xC2xC12):22C2 | 480,547 |
(D5×C2×C12)⋊23C2 = C12×D20 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12):23C2 | 480,666 |
(D5×C2×C12)⋊24C2 = C3×D5×C22⋊C4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 120 | | (D5xC2xC12):24C2 | 480,673 |
(D5×C2×C12)⋊25C2 = C3×Dic5⋊4D4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12):25C2 | 480,674 |
(D5×C2×C12)⋊26C2 = C3×D10.12D4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12):26C2 | 480,676 |
(D5×C2×C12)⋊27C2 = C3×D10⋊D4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12):27C2 | 480,677 |
(D5×C2×C12)⋊28C2 = C3×D20⋊8C4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12):28C2 | 480,686 |
(D5×C2×C12)⋊29C2 = C3×D10.13D4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12):29C2 | 480,687 |
(D5×C2×C12)⋊30C2 = C12×C5⋊D4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12):30C2 | 480,721 |
(D5×C2×C12)⋊31C2 = C6×C4○D20 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12):31C2 | 480,1138 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(D5×C2×C12).1C2 = D5×C4.Dic3 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 120 | 4 | (D5xC2xC12).1C2 | 480,358 |
(D5×C2×C12).2C2 = (C4×D5)⋊Dic3 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12).2C2 | 480,434 |
(D5×C2×C12).3C2 = C60.67D4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12).3C2 | 480,435 |
(D5×C2×C12).4C2 = C60.68D4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12).4C2 | 480,436 |
(D5×C2×C12).5C2 = D5×C4⋊Dic3 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12).5C2 | 480,488 |
(D5×C2×C12).6C2 = C2×D5×Dic6 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12).6C2 | 480,1073 |
(D5×C2×C12).7C2 = C60.93D4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12).7C2 | 480,31 |
(D5×C2×C12).8C2 = C2×D5×C3⋊C8 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12).8C2 | 480,357 |
(D5×C2×C12).9C2 = C2×C20.32D6 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12).9C2 | 480,369 |
(D5×C2×C12).10C2 = (D5×C12)⋊C4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12).10C2 | 480,433 |
(D5×C2×C12).11C2 = C4×D5×Dic3 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12).11C2 | 480,467 |
(D5×C2×C12).12C2 = C3×C4⋊C4⋊7D5 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12).12C2 | 480,685 |
(D5×C2×C12).13C2 = C3×D10⋊2Q8 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12).13C2 | 480,690 |
(D5×C2×C12).14C2 = C3×D5×M4(2) | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 120 | 4 | (D5xC2xC12).14C2 | 480,699 |
(D5×C2×C12).15C2 = C3×D10⋊3Q8 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12).15C2 | 480,739 |
(D5×C2×C12).16C2 = C6×Q8×D5 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12).16C2 | 480,1142 |
(D5×C2×C12).17C2 = C2×C12.F5 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12).17C2 | 480,1061 |
(D5×C2×C12).18C2 = C2×C60⋊C4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 120 | | (D5xC2xC12).18C2 | 480,1064 |
(D5×C2×C12).19C2 = C60.59(C2×C4) | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 120 | 4 | (D5xC2xC12).19C2 | 480,1062 |
(D5×C2×C12).20C2 = (C2×C12)⋊6F5 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 120 | 4 | (D5xC2xC12).20C2 | 480,1065 |
(D5×C2×C12).21C2 = C3×D10⋊1C8 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12).21C2 | 480,98 |
(D5×C2×C12).22C2 = C3×D10⋊C8 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12).22C2 | 480,283 |
(D5×C2×C12).23C2 = C3×D10.3Q8 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 120 | | (D5xC2xC12).23C2 | 480,286 |
(D5×C2×C12).24C2 = C30.7M4(2) | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12).24C2 | 480,308 |
(D5×C2×C12).25C2 = D10.10D12 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 120 | | (D5xC2xC12).25C2 | 480,311 |
(D5×C2×C12).26C2 = D10⋊Dic6 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12).26C2 | 480,425 |
(D5×C2×C12).27C2 = D5×Dic3⋊C4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12).27C2 | 480,468 |
(D5×C2×C12).28C2 = C3×C42⋊D5 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12).28C2 | 480,665 |
(D5×C2×C12).29C2 = C3×D5×C4⋊C4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12).29C2 | 480,684 |
(D5×C2×C12).30C2 = C3×D10⋊Q8 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12).30C2 | 480,689 |
(D5×C2×C12).31C2 = C6×C8⋊D5 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12).31C2 | 480,693 |
(D5×C2×C12).32C2 = C2×C60.C4 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12).32C2 | 480,1060 |
(D5×C2×C12).33C2 = C2×C4×C3⋊F5 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 120 | | (D5xC2xC12).33C2 | 480,1063 |
(D5×C2×C12).34C2 = C6×C4.F5 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12).34C2 | 480,1048 |
(D5×C2×C12).35C2 = C6×C4⋊F5 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 120 | | (D5xC2xC12).35C2 | 480,1051 |
(D5×C2×C12).36C2 = C3×D5⋊M4(2) | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 120 | 4 | (D5xC2xC12).36C2 | 480,1049 |
(D5×C2×C12).37C2 = C3×D10.C23 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 120 | 4 | (D5xC2xC12).37C2 | 480,1052 |
(D5×C2×C12).38C2 = C6×D5⋊C8 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 240 | | (D5xC2xC12).38C2 | 480,1047 |
(D5×C2×C12).39C2 = F5×C2×C12 | φ: C2/C1 → C2 ⊆ Out D5×C2×C12 | 120 | | (D5xC2xC12).39C2 | 480,1050 |
(D5×C2×C12).40C2 = D5×C4×C12 | φ: trivial image | 240 | | (D5xC2xC12).40C2 | 480,664 |
(D5×C2×C12).41C2 = D5×C2×C24 | φ: trivial image | 240 | | (D5xC2xC12).41C2 | 480,692 |