# Extensions 1→N→G→Q→1 with N=D5×C2×C12 and Q=C2

Direct product G=N×Q with N=D5×C2×C12 and Q=C2
dρLabelID
D5×C22×C12240D5xC2^2xC12480,1136

Semidirect products G=N:Q with N=D5×C2×C12 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5×C2×C12)⋊1C2 = D5×C4○D12φ: C2/C1C2 ⊆ Out D5×C2×C121204(D5xC2xC12):1C2480,1090
(D5×C2×C12)⋊2C2 = C60⋊D4φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12):2C2480,525
(D5×C2×C12)⋊3C2 = C127D20φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12):3C2480,526
(D5×C2×C12)⋊4C2 = C2×D125D5φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12):4C2480,1084
(D5×C2×C12)⋊5C2 = C2×C12.28D10φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12):5C2480,1085
(D5×C2×C12)⋊6C2 = C2×D5×D12φ: C2/C1C2 ⊆ Out D5×C2×C12120(D5xC2xC12):6C2480,1087
(D5×C2×C12)⋊7C2 = C4×C15⋊D4φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12):7C2480,515
(D5×C2×C12)⋊8C2 = C4×C3⋊D20φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12):8C2480,519
(D5×C2×C12)⋊9C2 = C2×D6.D10φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12):9C2480,1083
(D5×C2×C12)⋊10C2 = S3×C2×C4×D5φ: C2/C1C2 ⊆ Out D5×C2×C12120(D5xC2xC12):10C2480,1086
(D5×C2×C12)⋊11C2 = C3×C4⋊D20φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12):11C2480,688
(D5×C2×C12)⋊12C2 = C3×C202D4φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12):12C2480,731
(D5×C2×C12)⋊13C2 = C6×D4×D5φ: C2/C1C2 ⊆ Out D5×C2×C12120(D5xC2xC12):13C2480,1139
(D5×C2×C12)⋊14C2 = C6×D42D5φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12):14C2480,1140
(D5×C2×C12)⋊15C2 = C6×Q82D5φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12):15C2480,1143
(D5×C2×C12)⋊16C2 = C3×D5×C4○D4φ: C2/C1C2 ⊆ Out D5×C2×C121204(D5xC2xC12):16C2480,1145
(D5×C2×C12)⋊17C2 = Dic3⋊C4⋊D5φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12):17C2480,424
(D5×C2×C12)⋊18C2 = D6⋊(C4×D5)φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12):18C2480,516
(D5×C2×C12)⋊19C2 = C1520(C4×D4)φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12):19C2480,520
(D5×C2×C12)⋊20C2 = D6⋊C4⋊D5φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12):20C2480,523
(D5×C2×C12)⋊21C2 = D10⋊D12φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12):21C2480,524
(D5×C2×C12)⋊22C2 = D5×D6⋊C4φ: C2/C1C2 ⊆ Out D5×C2×C12120(D5xC2xC12):22C2480,547
(D5×C2×C12)⋊23C2 = C12×D20φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12):23C2480,666
(D5×C2×C12)⋊24C2 = C3×D5×C22⋊C4φ: C2/C1C2 ⊆ Out D5×C2×C12120(D5xC2xC12):24C2480,673
(D5×C2×C12)⋊25C2 = C3×Dic54D4φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12):25C2480,674
(D5×C2×C12)⋊26C2 = C3×D10.12D4φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12):26C2480,676
(D5×C2×C12)⋊27C2 = C3×D10⋊D4φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12):27C2480,677
(D5×C2×C12)⋊28C2 = C3×D208C4φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12):28C2480,686
(D5×C2×C12)⋊29C2 = C3×D10.13D4φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12):29C2480,687
(D5×C2×C12)⋊30C2 = C12×C5⋊D4φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12):30C2480,721
(D5×C2×C12)⋊31C2 = C6×C4○D20φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12):31C2480,1138

Non-split extensions G=N.Q with N=D5×C2×C12 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5×C2×C12).1C2 = D5×C4.Dic3φ: C2/C1C2 ⊆ Out D5×C2×C121204(D5xC2xC12).1C2480,358
(D5×C2×C12).2C2 = (C4×D5)⋊Dic3φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12).2C2480,434
(D5×C2×C12).3C2 = C60.67D4φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12).3C2480,435
(D5×C2×C12).4C2 = C60.68D4φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12).4C2480,436
(D5×C2×C12).5C2 = D5×C4⋊Dic3φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12).5C2480,488
(D5×C2×C12).6C2 = C2×D5×Dic6φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12).6C2480,1073
(D5×C2×C12).7C2 = C60.93D4φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12).7C2480,31
(D5×C2×C12).8C2 = C2×D5×C3⋊C8φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12).8C2480,357
(D5×C2×C12).9C2 = C2×C20.32D6φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12).9C2480,369
(D5×C2×C12).10C2 = (D5×C12)⋊C4φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12).10C2480,433
(D5×C2×C12).11C2 = C4×D5×Dic3φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12).11C2480,467
(D5×C2×C12).12C2 = C3×C4⋊C47D5φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12).12C2480,685
(D5×C2×C12).13C2 = C3×D102Q8φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12).13C2480,690
(D5×C2×C12).14C2 = C3×D5×M4(2)φ: C2/C1C2 ⊆ Out D5×C2×C121204(D5xC2xC12).14C2480,699
(D5×C2×C12).15C2 = C3×D103Q8φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12).15C2480,739
(D5×C2×C12).16C2 = C6×Q8×D5φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12).16C2480,1142
(D5×C2×C12).17C2 = C2×C12.F5φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12).17C2480,1061
(D5×C2×C12).18C2 = C2×C60⋊C4φ: C2/C1C2 ⊆ Out D5×C2×C12120(D5xC2xC12).18C2480,1064
(D5×C2×C12).19C2 = C60.59(C2×C4)φ: C2/C1C2 ⊆ Out D5×C2×C121204(D5xC2xC12).19C2480,1062
(D5×C2×C12).20C2 = (C2×C12)⋊6F5φ: C2/C1C2 ⊆ Out D5×C2×C121204(D5xC2xC12).20C2480,1065
(D5×C2×C12).21C2 = C3×D101C8φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12).21C2480,98
(D5×C2×C12).22C2 = C3×D10⋊C8φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12).22C2480,283
(D5×C2×C12).23C2 = C3×D10.3Q8φ: C2/C1C2 ⊆ Out D5×C2×C12120(D5xC2xC12).23C2480,286
(D5×C2×C12).24C2 = C30.7M4(2)φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12).24C2480,308
(D5×C2×C12).25C2 = D10.10D12φ: C2/C1C2 ⊆ Out D5×C2×C12120(D5xC2xC12).25C2480,311
(D5×C2×C12).26C2 = D10⋊Dic6φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12).26C2480,425
(D5×C2×C12).27C2 = D5×Dic3⋊C4φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12).27C2480,468
(D5×C2×C12).28C2 = C3×C42⋊D5φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12).28C2480,665
(D5×C2×C12).29C2 = C3×D5×C4⋊C4φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12).29C2480,684
(D5×C2×C12).30C2 = C3×D10⋊Q8φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12).30C2480,689
(D5×C2×C12).31C2 = C6×C8⋊D5φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12).31C2480,693
(D5×C2×C12).32C2 = C2×C60.C4φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12).32C2480,1060
(D5×C2×C12).33C2 = C2×C4×C3⋊F5φ: C2/C1C2 ⊆ Out D5×C2×C12120(D5xC2xC12).33C2480,1063
(D5×C2×C12).34C2 = C6×C4.F5φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12).34C2480,1048
(D5×C2×C12).35C2 = C6×C4⋊F5φ: C2/C1C2 ⊆ Out D5×C2×C12120(D5xC2xC12).35C2480,1051
(D5×C2×C12).36C2 = C3×D5⋊M4(2)φ: C2/C1C2 ⊆ Out D5×C2×C121204(D5xC2xC12).36C2480,1049
(D5×C2×C12).37C2 = C3×D10.C23φ: C2/C1C2 ⊆ Out D5×C2×C121204(D5xC2xC12).37C2480,1052
(D5×C2×C12).38C2 = C6×D5⋊C8φ: C2/C1C2 ⊆ Out D5×C2×C12240(D5xC2xC12).38C2480,1047
(D5×C2×C12).39C2 = F5×C2×C12φ: C2/C1C2 ⊆ Out D5×C2×C12120(D5xC2xC12).39C2480,1050
(D5×C2×C12).40C2 = D5×C4×C12φ: trivial image240(D5xC2xC12).40C2480,664
(D5×C2×C12).41C2 = D5×C2×C24φ: trivial image240(D5xC2xC12).41C2480,692

׿
×
𝔽