Extensions 1→N→G→Q→1 with N=C5×S3×D4 and Q=C2

Direct product G=N×Q with N=C5×S3×D4 and Q=C2
dρLabelID
S3×D4×C10120S3xD4xC10480,1154

Semidirect products G=N:Q with N=C5×S3×D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×S3×D4)⋊1C2 = S3×D4⋊D5φ: C2/C1C2 ⊆ Out C5×S3×D41208+(C5xS3xD4):1C2480,555
(C5×S3×D4)⋊2C2 = D2010D6φ: C2/C1C2 ⊆ Out C5×S3×D41208-(C5xS3xD4):2C2480,570
(C5×S3×D4)⋊3C2 = D12.9D10φ: C2/C1C2 ⊆ Out C5×S3×D41208+(C5xS3xD4):3C2480,572
(C5×S3×D4)⋊4C2 = S3×D4×D5φ: C2/C1C2 ⊆ Out C5×S3×D4608+(C5xS3xD4):4C2480,1097
(C5×S3×D4)⋊5C2 = S3×D42D5φ: C2/C1C2 ⊆ Out C5×S3×D41208-(C5xS3xD4):5C2480,1099
(C5×S3×D4)⋊6C2 = D2013D6φ: C2/C1C2 ⊆ Out C5×S3×D41208-(C5xS3xD4):6C2480,1101
(C5×S3×D4)⋊7C2 = D1214D10φ: C2/C1C2 ⊆ Out C5×S3×D41208+(C5xS3xD4):7C2480,1103
(C5×S3×D4)⋊8C2 = C5×S3×D8φ: C2/C1C2 ⊆ Out C5×S3×D41204(C5xS3xD4):8C2480,789
(C5×S3×D4)⋊9C2 = C5×D8⋊S3φ: C2/C1C2 ⊆ Out C5×S3×D41204(C5xS3xD4):9C2480,790
(C5×S3×D4)⋊10C2 = C5×Q83D6φ: C2/C1C2 ⊆ Out C5×S3×D41204(C5xS3xD4):10C2480,793
(C5×S3×D4)⋊11C2 = C5×D46D6φ: C2/C1C2 ⊆ Out C5×S3×D41204(C5xS3xD4):11C2480,1156
(C5×S3×D4)⋊12C2 = C5×D4○D12φ: C2/C1C2 ⊆ Out C5×S3×D41204(C5xS3xD4):12C2480,1161
(C5×S3×D4)⋊13C2 = C5×S3×C4○D4φ: trivial image1204(C5xS3xD4):13C2480,1160

Non-split extensions G=N.Q with N=C5×S3×D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×S3×D4).1C2 = S3×D4.D5φ: C2/C1C2 ⊆ Out C5×S3×D41208-(C5xS3xD4).1C2480,561
(C5×S3×D4).2C2 = C5×S3×SD16φ: C2/C1C2 ⊆ Out C5×S3×D41204(C5xS3xD4).2C2480,792

׿
×
𝔽