Extensions 1→N→G→Q→1 with N=C2×D60 and Q=C2

Direct product G=N×Q with N=C2×D60 and Q=C2
dρLabelID
C22×D60240C2^2xD60480,1167

Semidirect products G=N:Q with N=C2×D60 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D60)⋊1C2 = D30⋊D4φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60):1C2480,496
(C2×D60)⋊2C2 = D302D4φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60):2C2480,535
(C2×D60)⋊3C2 = D305D4φ: C2/C1C2 ⊆ Out C2×D60120(C2xD60):3C2480,552
(C2×D60)⋊4C2 = C426D15φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60):4C2480,839
(C2×D60)⋊5C2 = D3016D4φ: C2/C1C2 ⊆ Out C2×D60120(C2xD60):5C2480,847
(C2×D60)⋊6C2 = D309D4φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60):6C2480,849
(C2×D60)⋊7C2 = C4⋊D60φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60):7C2480,860
(C2×D60)⋊8C2 = C2×D120φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60):8C2480,868
(C2×D60)⋊9C2 = C6029D4φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60):9C2480,895
(C2×D60)⋊10C2 = C8⋊D30φ: C2/C1C2 ⊆ Out C2×D601204+(C2xD60):10C2480,873
(C2×D60)⋊11C2 = C2×D4⋊D15φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60):11C2480,896
(C2×D60)⋊12C2 = C603D4φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60):12C2480,905
(C2×D60)⋊13C2 = D4⋊D30φ: C2/C1C2 ⊆ Out C2×D601204+(C2xD60):13C2480,914
(C2×D60)⋊14C2 = C2×D4×D15φ: C2/C1C2 ⊆ Out C2×D60120(C2xD60):14C2480,1169
(C2×D60)⋊15C2 = C2×Q83D15φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60):15C2480,1173
(C2×D60)⋊16C2 = D48D30φ: C2/C1C2 ⊆ Out C2×D601204+(C2xD60):16C2480,1176
(C2×D60)⋊17C2 = D2019D6φ: C2/C1C2 ⊆ Out C2×D601204+(C2xD60):17C2480,377
(C2×D60)⋊18C2 = C60.38D4φ: C2/C1C2 ⊆ Out C2×D601204+(C2xD60):18C2480,381
(C2×D60)⋊19C2 = D2029D6φ: C2/C1C2 ⊆ Out C2×D601204+(C2xD60):19C2480,1095
(C2×D60)⋊20C2 = C2×C3⋊D40φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60):20C2480,376
(C2×D60)⋊21C2 = C12⋊D20φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60):21C2480,534
(C2×D60)⋊22C2 = C606D4φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60):22C2480,536
(C2×D60)⋊23C2 = C2×D60⋊C2φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60):23C2480,1081
(C2×D60)⋊24C2 = C2×S3×D20φ: C2/C1C2 ⊆ Out C2×D60120(C2xD60):24C2480,1088
(C2×D60)⋊25C2 = C2×C5⋊D24φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60):25C2480,378
(C2×D60)⋊26C2 = C127D20φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60):26C2480,526
(C2×D60)⋊27C2 = C20⋊D12φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60):27C2480,527
(C2×D60)⋊28C2 = C2×C12.28D10φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60):28C2480,1085
(C2×D60)⋊29C2 = C2×D5×D12φ: C2/C1C2 ⊆ Out C2×D60120(C2xD60):29C2480,1087
(C2×D60)⋊30C2 = C2×D6011C2φ: trivial image240(C2xD60):30C2480,1168

Non-split extensions G=N.Q with N=C2×D60 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D60).1C2 = D608C4φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60).1C2480,181
(C2×D60).2C2 = D30.6D4φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60).2C2480,509
(C2×D60).3C2 = C427D15φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60).3C2480,840
(C2×D60).4C2 = D30.29D4φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60).4C2480,859
(C2×D60).5C2 = C2×C24⋊D5φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60).5C2480,867
(C2×D60).6C2 = D609C4φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60).6C2480,169
(C2×D60).7C2 = M4(2)⋊D15φ: C2/C1C2 ⊆ Out C2×D601204+(C2xD60).7C2480,183
(C2×D60).8C2 = D6011C4φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60).8C2480,858
(C2×D60).9C2 = C2×Q82D15φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60).9C2480,906
(C2×D60).10C2 = C60.23D4φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60).10C2480,912
(C2×D60).11C2 = C60.29D4φ: C2/C1C2 ⊆ Out C2×D601204+(C2xD60).11C2480,36
(C2×D60).12C2 = D6012C4φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60).12C2480,44
(C2×D60).13C2 = C2×C15⋊SD16φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60).13C2480,390
(C2×D60).14C2 = C60.47D4φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60).14C2480,450
(C2×D60).15C2 = D6014C4φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60).15C2480,504
(C2×D60).16C2 = D6015C4φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60).16C2480,45
(C2×D60).17C2 = C2×Dic6⋊D5φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60).17C2480,393
(C2×D60).18C2 = C60.70D4φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60).18C2480,451
(C2×D60).19C2 = D6017C4φ: C2/C1C2 ⊆ Out C2×D60240(C2xD60).19C2480,494
(C2×D60).20C2 = C4×D60φ: trivial image240(C2xD60).20C2480,838

׿
×
𝔽