Copied to
clipboard

G = C2×D4⋊D15order 480 = 25·3·5

Direct product of C2 and D4⋊D15

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D4⋊D15, C307D8, D43D30, C60.14D4, D6022C22, C60.74C23, (C6×D4)⋊1D5, C1516(C2×D8), C63(D4⋊D5), (C5×D4)⋊18D6, (D4×C30)⋊1C2, (C2×D4)⋊1D15, (D4×C10)⋊1S3, C103(D4⋊S3), (C3×D4)⋊18D10, (C2×D60)⋊11C2, (C2×C4).47D30, (C2×C30).145D4, C30.378(C2×D4), (C2×C20).144D6, C4.5(C157D4), C153C829C22, (C2×C12).143D10, (D4×C15)⋊20C22, C12.41(C5⋊D4), C20.39(C3⋊D4), (C2×C60).70C22, C4.11(C22×D15), C20.112(C22×S3), C12.112(C22×D5), C22.21(C157D4), C34(C2×D4⋊D5), C54(C2×D4⋊S3), (C2×C153C8)⋊4C2, C2.8(C2×C157D4), C6.103(C2×C5⋊D4), C10.103(C2×C3⋊D4), (C2×C6).77(C5⋊D4), (C2×C10).77(C3⋊D4), SmallGroup(480,896)

Series: Derived Chief Lower central Upper central

C1C60 — C2×D4⋊D15
C1C5C15C30C60D60C2×D60 — C2×D4⋊D15
C15C30C60 — C2×D4⋊D15
C1C22C2×C4C2×D4

Generators and relations for C2×D4⋊D15
 G = < a,b,c,d,e | a2=b4=c2=d15=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe=b-1, bd=db, cd=dc, ece=bc, ede=d-1 >

Subgroups: 980 in 152 conjugacy classes, 55 normal (31 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C5, S3, C6, C6, C6, C8, C2×C4, D4, D4, C23, D5, C10, C10, C10, C12, D6, C2×C6, C2×C6, C15, C2×C8, D8, C2×D4, C2×D4, C20, D10, C2×C10, C2×C10, C3⋊C8, D12, C2×C12, C3×D4, C3×D4, C22×S3, C22×C6, D15, C30, C30, C30, C2×D8, C52C8, D20, C2×C20, C5×D4, C5×D4, C22×D5, C22×C10, C2×C3⋊C8, D4⋊S3, C2×D12, C6×D4, C60, D30, C2×C30, C2×C30, C2×C52C8, D4⋊D5, C2×D20, D4×C10, C2×D4⋊S3, C153C8, D60, D60, C2×C60, D4×C15, D4×C15, C22×D15, C22×C30, C2×D4⋊D5, C2×C153C8, D4⋊D15, C2×D60, D4×C30, C2×D4⋊D15
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, D8, C2×D4, D10, C3⋊D4, C22×S3, D15, C2×D8, C5⋊D4, C22×D5, D4⋊S3, C2×C3⋊D4, D30, D4⋊D5, C2×C5⋊D4, C2×D4⋊S3, C157D4, C22×D15, C2×D4⋊D5, D4⋊D15, C2×C157D4, C2×D4⋊D15

Smallest permutation representation of C2×D4⋊D15
On 240 points
Generators in S240
(1 121)(2 122)(3 123)(4 124)(5 125)(6 126)(7 127)(8 128)(9 129)(10 130)(11 131)(12 132)(13 133)(14 134)(15 135)(16 144)(17 145)(18 146)(19 147)(20 148)(21 149)(22 150)(23 136)(24 137)(25 138)(26 139)(27 140)(28 141)(29 142)(30 143)(31 164)(32 165)(33 151)(34 152)(35 153)(36 154)(37 155)(38 156)(39 157)(40 158)(41 159)(42 160)(43 161)(44 162)(45 163)(46 169)(47 170)(48 171)(49 172)(50 173)(51 174)(52 175)(53 176)(54 177)(55 178)(56 179)(57 180)(58 166)(59 167)(60 168)(61 187)(62 188)(63 189)(64 190)(65 191)(66 192)(67 193)(68 194)(69 195)(70 181)(71 182)(72 183)(73 184)(74 185)(75 186)(76 209)(77 210)(78 196)(79 197)(80 198)(81 199)(82 200)(83 201)(84 202)(85 203)(86 204)(87 205)(88 206)(89 207)(90 208)(91 222)(92 223)(93 224)(94 225)(95 211)(96 212)(97 213)(98 214)(99 215)(100 216)(101 217)(102 218)(103 219)(104 220)(105 221)(106 236)(107 237)(108 238)(109 239)(110 240)(111 226)(112 227)(113 228)(114 229)(115 230)(116 231)(117 232)(118 233)(119 234)(120 235)
(1 49 21 32)(2 50 22 33)(3 51 23 34)(4 52 24 35)(5 53 25 36)(6 54 26 37)(7 55 27 38)(8 56 28 39)(9 57 29 40)(10 58 30 41)(11 59 16 42)(12 60 17 43)(13 46 18 44)(14 47 19 45)(15 48 20 31)(61 100 79 112)(62 101 80 113)(63 102 81 114)(64 103 82 115)(65 104 83 116)(66 105 84 117)(67 91 85 118)(68 92 86 119)(69 93 87 120)(70 94 88 106)(71 95 89 107)(72 96 90 108)(73 97 76 109)(74 98 77 110)(75 99 78 111)(121 172 149 165)(122 173 150 151)(123 174 136 152)(124 175 137 153)(125 176 138 154)(126 177 139 155)(127 178 140 156)(128 179 141 157)(129 180 142 158)(130 166 143 159)(131 167 144 160)(132 168 145 161)(133 169 146 162)(134 170 147 163)(135 171 148 164)(181 225 206 236)(182 211 207 237)(183 212 208 238)(184 213 209 239)(185 214 210 240)(186 215 196 226)(187 216 197 227)(188 217 198 228)(189 218 199 229)(190 219 200 230)(191 220 201 231)(192 221 202 232)(193 222 203 233)(194 223 204 234)(195 224 205 235)
(1 239)(2 240)(3 226)(4 227)(5 228)(6 229)(7 230)(8 231)(9 232)(10 233)(11 234)(12 235)(13 236)(14 237)(15 238)(16 223)(17 224)(18 225)(19 211)(20 212)(21 213)(22 214)(23 215)(24 216)(25 217)(26 218)(27 219)(28 220)(29 221)(30 222)(31 183)(32 184)(33 185)(34 186)(35 187)(36 188)(37 189)(38 190)(39 191)(40 192)(41 193)(42 194)(43 195)(44 181)(45 182)(46 206)(47 207)(48 208)(49 209)(50 210)(51 196)(52 197)(53 198)(54 199)(55 200)(56 201)(57 202)(58 203)(59 204)(60 205)(61 153)(62 154)(63 155)(64 156)(65 157)(66 158)(67 159)(68 160)(69 161)(70 162)(71 163)(72 164)(73 165)(74 151)(75 152)(76 172)(77 173)(78 174)(79 175)(80 176)(81 177)(82 178)(83 179)(84 180)(85 166)(86 167)(87 168)(88 169)(89 170)(90 171)(91 143)(92 144)(93 145)(94 146)(95 147)(96 148)(97 149)(98 150)(99 136)(100 137)(101 138)(102 139)(103 140)(104 141)(105 142)(106 133)(107 134)(108 135)(109 121)(110 122)(111 123)(112 124)(113 125)(114 126)(115 127)(116 128)(117 129)(118 130)(119 131)(120 132)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160 161 162 163 164 165)(166 167 168 169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192 193 194 195)(196 197 198 199 200 201 202 203 204 205 206 207 208 209 210)(211 212 213 214 215 216 217 218 219 220 221 222 223 224 225)(226 227 228 229 230 231 232 233 234 235 236 237 238 239 240)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 25)(17 24)(18 23)(19 22)(20 21)(26 30)(27 29)(31 49)(32 48)(33 47)(34 46)(35 60)(36 59)(37 58)(38 57)(39 56)(40 55)(41 54)(42 53)(43 52)(44 51)(45 50)(61 93)(62 92)(63 91)(64 105)(65 104)(66 103)(67 102)(68 101)(69 100)(70 99)(71 98)(72 97)(73 96)(74 95)(75 94)(76 108)(77 107)(78 106)(79 120)(80 119)(81 118)(82 117)(83 116)(84 115)(85 114)(86 113)(87 112)(88 111)(89 110)(90 109)(121 135)(122 134)(123 133)(124 132)(125 131)(126 130)(127 129)(136 146)(137 145)(138 144)(139 143)(140 142)(147 150)(148 149)(151 170)(152 169)(153 168)(154 167)(155 166)(156 180)(157 179)(158 178)(159 177)(160 176)(161 175)(162 174)(163 173)(164 172)(165 171)(181 215)(182 214)(183 213)(184 212)(185 211)(186 225)(187 224)(188 223)(189 222)(190 221)(191 220)(192 219)(193 218)(194 217)(195 216)(196 236)(197 235)(198 234)(199 233)(200 232)(201 231)(202 230)(203 229)(204 228)(205 227)(206 226)(207 240)(208 239)(209 238)(210 237)

G:=sub<Sym(240)| (1,121)(2,122)(3,123)(4,124)(5,125)(6,126)(7,127)(8,128)(9,129)(10,130)(11,131)(12,132)(13,133)(14,134)(15,135)(16,144)(17,145)(18,146)(19,147)(20,148)(21,149)(22,150)(23,136)(24,137)(25,138)(26,139)(27,140)(28,141)(29,142)(30,143)(31,164)(32,165)(33,151)(34,152)(35,153)(36,154)(37,155)(38,156)(39,157)(40,158)(41,159)(42,160)(43,161)(44,162)(45,163)(46,169)(47,170)(48,171)(49,172)(50,173)(51,174)(52,175)(53,176)(54,177)(55,178)(56,179)(57,180)(58,166)(59,167)(60,168)(61,187)(62,188)(63,189)(64,190)(65,191)(66,192)(67,193)(68,194)(69,195)(70,181)(71,182)(72,183)(73,184)(74,185)(75,186)(76,209)(77,210)(78,196)(79,197)(80,198)(81,199)(82,200)(83,201)(84,202)(85,203)(86,204)(87,205)(88,206)(89,207)(90,208)(91,222)(92,223)(93,224)(94,225)(95,211)(96,212)(97,213)(98,214)(99,215)(100,216)(101,217)(102,218)(103,219)(104,220)(105,221)(106,236)(107,237)(108,238)(109,239)(110,240)(111,226)(112,227)(113,228)(114,229)(115,230)(116,231)(117,232)(118,233)(119,234)(120,235), (1,49,21,32)(2,50,22,33)(3,51,23,34)(4,52,24,35)(5,53,25,36)(6,54,26,37)(7,55,27,38)(8,56,28,39)(9,57,29,40)(10,58,30,41)(11,59,16,42)(12,60,17,43)(13,46,18,44)(14,47,19,45)(15,48,20,31)(61,100,79,112)(62,101,80,113)(63,102,81,114)(64,103,82,115)(65,104,83,116)(66,105,84,117)(67,91,85,118)(68,92,86,119)(69,93,87,120)(70,94,88,106)(71,95,89,107)(72,96,90,108)(73,97,76,109)(74,98,77,110)(75,99,78,111)(121,172,149,165)(122,173,150,151)(123,174,136,152)(124,175,137,153)(125,176,138,154)(126,177,139,155)(127,178,140,156)(128,179,141,157)(129,180,142,158)(130,166,143,159)(131,167,144,160)(132,168,145,161)(133,169,146,162)(134,170,147,163)(135,171,148,164)(181,225,206,236)(182,211,207,237)(183,212,208,238)(184,213,209,239)(185,214,210,240)(186,215,196,226)(187,216,197,227)(188,217,198,228)(189,218,199,229)(190,219,200,230)(191,220,201,231)(192,221,202,232)(193,222,203,233)(194,223,204,234)(195,224,205,235), (1,239)(2,240)(3,226)(4,227)(5,228)(6,229)(7,230)(8,231)(9,232)(10,233)(11,234)(12,235)(13,236)(14,237)(15,238)(16,223)(17,224)(18,225)(19,211)(20,212)(21,213)(22,214)(23,215)(24,216)(25,217)(26,218)(27,219)(28,220)(29,221)(30,222)(31,183)(32,184)(33,185)(34,186)(35,187)(36,188)(37,189)(38,190)(39,191)(40,192)(41,193)(42,194)(43,195)(44,181)(45,182)(46,206)(47,207)(48,208)(49,209)(50,210)(51,196)(52,197)(53,198)(54,199)(55,200)(56,201)(57,202)(58,203)(59,204)(60,205)(61,153)(62,154)(63,155)(64,156)(65,157)(66,158)(67,159)(68,160)(69,161)(70,162)(71,163)(72,164)(73,165)(74,151)(75,152)(76,172)(77,173)(78,174)(79,175)(80,176)(81,177)(82,178)(83,179)(84,180)(85,166)(86,167)(87,168)(88,169)(89,170)(90,171)(91,143)(92,144)(93,145)(94,146)(95,147)(96,148)(97,149)(98,150)(99,136)(100,137)(101,138)(102,139)(103,140)(104,141)(105,142)(106,133)(107,134)(108,135)(109,121)(110,122)(111,123)(112,124)(113,125)(114,126)(115,127)(116,128)(117,129)(118,130)(119,131)(120,132), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165)(166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195)(196,197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224,225)(226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,25)(17,24)(18,23)(19,22)(20,21)(26,30)(27,29)(31,49)(32,48)(33,47)(34,46)(35,60)(36,59)(37,58)(38,57)(39,56)(40,55)(41,54)(42,53)(43,52)(44,51)(45,50)(61,93)(62,92)(63,91)(64,105)(65,104)(66,103)(67,102)(68,101)(69,100)(70,99)(71,98)(72,97)(73,96)(74,95)(75,94)(76,108)(77,107)(78,106)(79,120)(80,119)(81,118)(82,117)(83,116)(84,115)(85,114)(86,113)(87,112)(88,111)(89,110)(90,109)(121,135)(122,134)(123,133)(124,132)(125,131)(126,130)(127,129)(136,146)(137,145)(138,144)(139,143)(140,142)(147,150)(148,149)(151,170)(152,169)(153,168)(154,167)(155,166)(156,180)(157,179)(158,178)(159,177)(160,176)(161,175)(162,174)(163,173)(164,172)(165,171)(181,215)(182,214)(183,213)(184,212)(185,211)(186,225)(187,224)(188,223)(189,222)(190,221)(191,220)(192,219)(193,218)(194,217)(195,216)(196,236)(197,235)(198,234)(199,233)(200,232)(201,231)(202,230)(203,229)(204,228)(205,227)(206,226)(207,240)(208,239)(209,238)(210,237)>;

G:=Group( (1,121)(2,122)(3,123)(4,124)(5,125)(6,126)(7,127)(8,128)(9,129)(10,130)(11,131)(12,132)(13,133)(14,134)(15,135)(16,144)(17,145)(18,146)(19,147)(20,148)(21,149)(22,150)(23,136)(24,137)(25,138)(26,139)(27,140)(28,141)(29,142)(30,143)(31,164)(32,165)(33,151)(34,152)(35,153)(36,154)(37,155)(38,156)(39,157)(40,158)(41,159)(42,160)(43,161)(44,162)(45,163)(46,169)(47,170)(48,171)(49,172)(50,173)(51,174)(52,175)(53,176)(54,177)(55,178)(56,179)(57,180)(58,166)(59,167)(60,168)(61,187)(62,188)(63,189)(64,190)(65,191)(66,192)(67,193)(68,194)(69,195)(70,181)(71,182)(72,183)(73,184)(74,185)(75,186)(76,209)(77,210)(78,196)(79,197)(80,198)(81,199)(82,200)(83,201)(84,202)(85,203)(86,204)(87,205)(88,206)(89,207)(90,208)(91,222)(92,223)(93,224)(94,225)(95,211)(96,212)(97,213)(98,214)(99,215)(100,216)(101,217)(102,218)(103,219)(104,220)(105,221)(106,236)(107,237)(108,238)(109,239)(110,240)(111,226)(112,227)(113,228)(114,229)(115,230)(116,231)(117,232)(118,233)(119,234)(120,235), (1,49,21,32)(2,50,22,33)(3,51,23,34)(4,52,24,35)(5,53,25,36)(6,54,26,37)(7,55,27,38)(8,56,28,39)(9,57,29,40)(10,58,30,41)(11,59,16,42)(12,60,17,43)(13,46,18,44)(14,47,19,45)(15,48,20,31)(61,100,79,112)(62,101,80,113)(63,102,81,114)(64,103,82,115)(65,104,83,116)(66,105,84,117)(67,91,85,118)(68,92,86,119)(69,93,87,120)(70,94,88,106)(71,95,89,107)(72,96,90,108)(73,97,76,109)(74,98,77,110)(75,99,78,111)(121,172,149,165)(122,173,150,151)(123,174,136,152)(124,175,137,153)(125,176,138,154)(126,177,139,155)(127,178,140,156)(128,179,141,157)(129,180,142,158)(130,166,143,159)(131,167,144,160)(132,168,145,161)(133,169,146,162)(134,170,147,163)(135,171,148,164)(181,225,206,236)(182,211,207,237)(183,212,208,238)(184,213,209,239)(185,214,210,240)(186,215,196,226)(187,216,197,227)(188,217,198,228)(189,218,199,229)(190,219,200,230)(191,220,201,231)(192,221,202,232)(193,222,203,233)(194,223,204,234)(195,224,205,235), (1,239)(2,240)(3,226)(4,227)(5,228)(6,229)(7,230)(8,231)(9,232)(10,233)(11,234)(12,235)(13,236)(14,237)(15,238)(16,223)(17,224)(18,225)(19,211)(20,212)(21,213)(22,214)(23,215)(24,216)(25,217)(26,218)(27,219)(28,220)(29,221)(30,222)(31,183)(32,184)(33,185)(34,186)(35,187)(36,188)(37,189)(38,190)(39,191)(40,192)(41,193)(42,194)(43,195)(44,181)(45,182)(46,206)(47,207)(48,208)(49,209)(50,210)(51,196)(52,197)(53,198)(54,199)(55,200)(56,201)(57,202)(58,203)(59,204)(60,205)(61,153)(62,154)(63,155)(64,156)(65,157)(66,158)(67,159)(68,160)(69,161)(70,162)(71,163)(72,164)(73,165)(74,151)(75,152)(76,172)(77,173)(78,174)(79,175)(80,176)(81,177)(82,178)(83,179)(84,180)(85,166)(86,167)(87,168)(88,169)(89,170)(90,171)(91,143)(92,144)(93,145)(94,146)(95,147)(96,148)(97,149)(98,150)(99,136)(100,137)(101,138)(102,139)(103,140)(104,141)(105,142)(106,133)(107,134)(108,135)(109,121)(110,122)(111,123)(112,124)(113,125)(114,126)(115,127)(116,128)(117,129)(118,130)(119,131)(120,132), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165)(166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195)(196,197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224,225)(226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,25)(17,24)(18,23)(19,22)(20,21)(26,30)(27,29)(31,49)(32,48)(33,47)(34,46)(35,60)(36,59)(37,58)(38,57)(39,56)(40,55)(41,54)(42,53)(43,52)(44,51)(45,50)(61,93)(62,92)(63,91)(64,105)(65,104)(66,103)(67,102)(68,101)(69,100)(70,99)(71,98)(72,97)(73,96)(74,95)(75,94)(76,108)(77,107)(78,106)(79,120)(80,119)(81,118)(82,117)(83,116)(84,115)(85,114)(86,113)(87,112)(88,111)(89,110)(90,109)(121,135)(122,134)(123,133)(124,132)(125,131)(126,130)(127,129)(136,146)(137,145)(138,144)(139,143)(140,142)(147,150)(148,149)(151,170)(152,169)(153,168)(154,167)(155,166)(156,180)(157,179)(158,178)(159,177)(160,176)(161,175)(162,174)(163,173)(164,172)(165,171)(181,215)(182,214)(183,213)(184,212)(185,211)(186,225)(187,224)(188,223)(189,222)(190,221)(191,220)(192,219)(193,218)(194,217)(195,216)(196,236)(197,235)(198,234)(199,233)(200,232)(201,231)(202,230)(203,229)(204,228)(205,227)(206,226)(207,240)(208,239)(209,238)(210,237) );

G=PermutationGroup([[(1,121),(2,122),(3,123),(4,124),(5,125),(6,126),(7,127),(8,128),(9,129),(10,130),(11,131),(12,132),(13,133),(14,134),(15,135),(16,144),(17,145),(18,146),(19,147),(20,148),(21,149),(22,150),(23,136),(24,137),(25,138),(26,139),(27,140),(28,141),(29,142),(30,143),(31,164),(32,165),(33,151),(34,152),(35,153),(36,154),(37,155),(38,156),(39,157),(40,158),(41,159),(42,160),(43,161),(44,162),(45,163),(46,169),(47,170),(48,171),(49,172),(50,173),(51,174),(52,175),(53,176),(54,177),(55,178),(56,179),(57,180),(58,166),(59,167),(60,168),(61,187),(62,188),(63,189),(64,190),(65,191),(66,192),(67,193),(68,194),(69,195),(70,181),(71,182),(72,183),(73,184),(74,185),(75,186),(76,209),(77,210),(78,196),(79,197),(80,198),(81,199),(82,200),(83,201),(84,202),(85,203),(86,204),(87,205),(88,206),(89,207),(90,208),(91,222),(92,223),(93,224),(94,225),(95,211),(96,212),(97,213),(98,214),(99,215),(100,216),(101,217),(102,218),(103,219),(104,220),(105,221),(106,236),(107,237),(108,238),(109,239),(110,240),(111,226),(112,227),(113,228),(114,229),(115,230),(116,231),(117,232),(118,233),(119,234),(120,235)], [(1,49,21,32),(2,50,22,33),(3,51,23,34),(4,52,24,35),(5,53,25,36),(6,54,26,37),(7,55,27,38),(8,56,28,39),(9,57,29,40),(10,58,30,41),(11,59,16,42),(12,60,17,43),(13,46,18,44),(14,47,19,45),(15,48,20,31),(61,100,79,112),(62,101,80,113),(63,102,81,114),(64,103,82,115),(65,104,83,116),(66,105,84,117),(67,91,85,118),(68,92,86,119),(69,93,87,120),(70,94,88,106),(71,95,89,107),(72,96,90,108),(73,97,76,109),(74,98,77,110),(75,99,78,111),(121,172,149,165),(122,173,150,151),(123,174,136,152),(124,175,137,153),(125,176,138,154),(126,177,139,155),(127,178,140,156),(128,179,141,157),(129,180,142,158),(130,166,143,159),(131,167,144,160),(132,168,145,161),(133,169,146,162),(134,170,147,163),(135,171,148,164),(181,225,206,236),(182,211,207,237),(183,212,208,238),(184,213,209,239),(185,214,210,240),(186,215,196,226),(187,216,197,227),(188,217,198,228),(189,218,199,229),(190,219,200,230),(191,220,201,231),(192,221,202,232),(193,222,203,233),(194,223,204,234),(195,224,205,235)], [(1,239),(2,240),(3,226),(4,227),(5,228),(6,229),(7,230),(8,231),(9,232),(10,233),(11,234),(12,235),(13,236),(14,237),(15,238),(16,223),(17,224),(18,225),(19,211),(20,212),(21,213),(22,214),(23,215),(24,216),(25,217),(26,218),(27,219),(28,220),(29,221),(30,222),(31,183),(32,184),(33,185),(34,186),(35,187),(36,188),(37,189),(38,190),(39,191),(40,192),(41,193),(42,194),(43,195),(44,181),(45,182),(46,206),(47,207),(48,208),(49,209),(50,210),(51,196),(52,197),(53,198),(54,199),(55,200),(56,201),(57,202),(58,203),(59,204),(60,205),(61,153),(62,154),(63,155),(64,156),(65,157),(66,158),(67,159),(68,160),(69,161),(70,162),(71,163),(72,164),(73,165),(74,151),(75,152),(76,172),(77,173),(78,174),(79,175),(80,176),(81,177),(82,178),(83,179),(84,180),(85,166),(86,167),(87,168),(88,169),(89,170),(90,171),(91,143),(92,144),(93,145),(94,146),(95,147),(96,148),(97,149),(98,150),(99,136),(100,137),(101,138),(102,139),(103,140),(104,141),(105,142),(106,133),(107,134),(108,135),(109,121),(110,122),(111,123),(112,124),(113,125),(114,126),(115,127),(116,128),(117,129),(118,130),(119,131),(120,132)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165),(166,167,168,169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195),(196,197,198,199,200,201,202,203,204,205,206,207,208,209,210),(211,212,213,214,215,216,217,218,219,220,221,222,223,224,225),(226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,25),(17,24),(18,23),(19,22),(20,21),(26,30),(27,29),(31,49),(32,48),(33,47),(34,46),(35,60),(36,59),(37,58),(38,57),(39,56),(40,55),(41,54),(42,53),(43,52),(44,51),(45,50),(61,93),(62,92),(63,91),(64,105),(65,104),(66,103),(67,102),(68,101),(69,100),(70,99),(71,98),(72,97),(73,96),(74,95),(75,94),(76,108),(77,107),(78,106),(79,120),(80,119),(81,118),(82,117),(83,116),(84,115),(85,114),(86,113),(87,112),(88,111),(89,110),(90,109),(121,135),(122,134),(123,133),(124,132),(125,131),(126,130),(127,129),(136,146),(137,145),(138,144),(139,143),(140,142),(147,150),(148,149),(151,170),(152,169),(153,168),(154,167),(155,166),(156,180),(157,179),(158,178),(159,177),(160,176),(161,175),(162,174),(163,173),(164,172),(165,171),(181,215),(182,214),(183,213),(184,212),(185,211),(186,225),(187,224),(188,223),(189,222),(190,221),(191,220),(192,219),(193,218),(194,217),(195,216),(196,236),(197,235),(198,234),(199,233),(200,232),(201,231),(202,230),(203,229),(204,228),(205,227),(206,226),(207,240),(208,239),(209,238),(210,237)]])

84 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B5A5B6A6B6C6D6E6F6G8A8B8C8D10A···10F10G···10N12A12B15A15B15C15D20A20B20C20D30A···30L30M···30AB60A···60H
order12222222344556666666888810···1010···101212151515152020202030···3030···3060···60
size1111446060222222224444303030302···24···444222244442···24···44···4

84 irreducible representations

dim11111222222222222222222444
type++++++++++++++++++++
imageC1C2C2C2C2S3D4D4D5D6D6D8D10D10C3⋊D4C3⋊D4D15C5⋊D4C5⋊D4D30D30C157D4C157D4D4⋊S3D4⋊D5D4⋊D15
kernelC2×D4⋊D15C2×C153C8D4⋊D15C2×D60D4×C30D4×C10C60C2×C30C6×D4C2×C20C5×D4C30C2×C12C3×D4C20C2×C10C2×D4C12C2×C6C2×C4D4C4C22C10C6C2
# reps11411111212424224444888248

Matrix representation of C2×D4⋊D15 in GL4(𝔽241) generated by

240000
024000
002400
000240
,
1000
0100
00240192
001231
,
240000
024000
002257
0093219
,
11017300
2158400
0010
0001
,
806400
7716100
0010
00118240
G:=sub<GL(4,GF(241))| [240,0,0,0,0,240,0,0,0,0,240,0,0,0,0,240],[1,0,0,0,0,1,0,0,0,0,240,123,0,0,192,1],[240,0,0,0,0,240,0,0,0,0,22,93,0,0,57,219],[110,215,0,0,173,84,0,0,0,0,1,0,0,0,0,1],[80,77,0,0,64,161,0,0,0,0,1,118,0,0,0,240] >;

C2×D4⋊D15 in GAP, Magma, Sage, TeX

C_2\times D_4\rtimes D_{15}
% in TeX

G:=Group("C2xD4:D15");
// GroupNames label

G:=SmallGroup(480,896);
// by ID

G=gap.SmallGroup(480,896);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,254,675,185,80,2693,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^15=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e=b^-1,b*d=d*b,c*d=d*c,e*c*e=b*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽