Copied to
clipboard

G = C60.38D4order 480 = 25·3·5

38th non-split extension by C60 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C60.38D4, D1219D10, C20.51D12, Dic616D10, C60.129C23, D60.49C22, C52C84D6, C4○D124D5, C55(C8⋊D6), (C2×D60)⋊18C2, C5⋊D2414C2, (C2×C20).91D6, (C2×C10).6D12, C30.80(C2×D4), (C2×C30).48D4, C4.Dic58S3, C31(D4⋊D10), C1511(C8⋊C22), C10.50(C2×D12), (C2×C12).91D10, Dic6⋊D513C2, (C5×D12)⋊21C22, C12.28(C5⋊D4), C4.16(C5⋊D12), C20.91(C22×S3), (C2×C60).94C22, (C5×Dic6)⋊18C22, C12.152(C22×D5), C22.9(C5⋊D12), C4.77(C2×S3×D5), C6.4(C2×C5⋊D4), (C5×C4○D12)⋊6C2, (C2×C4).11(S3×D5), C2.8(C2×C5⋊D12), (C3×C4.Dic5)⋊8C2, (C3×C52C8)⋊18C22, (C2×C6).12(C5⋊D4), SmallGroup(480,381)

Series: Derived Chief Lower central Upper central

C1C60 — C60.38D4
C1C5C15C30C60C3×C52C8C5⋊D24 — C60.38D4
C15C30C60 — C60.38D4
C1C2C2×C4

Generators and relations for C60.38D4
 G = < a,b,c | a60=c2=1, b4=a30, bab-1=a19, cac=a-1, cbc=a30b3 >

Subgroups: 956 in 136 conjugacy classes, 44 normal (34 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, S3, C6, C6, C8, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C10, Dic3, C12, D6, C2×C6, C15, M4(2), D8, SD16, C2×D4, C4○D4, C20, C20, D10, C2×C10, C2×C10, C24, Dic6, C4×S3, D12, D12, C3⋊D4, C2×C12, C22×S3, C5×S3, D15, C30, C30, C8⋊C22, C52C8, D20, C2×C20, C2×C20, C5×D4, C5×Q8, C22×D5, C24⋊C2, D24, C3×M4(2), C2×D12, C4○D12, C5×Dic3, C60, S3×C10, D30, C2×C30, C4.Dic5, D4⋊D5, Q8⋊D5, C2×D20, C5×C4○D4, C8⋊D6, C3×C52C8, C5×Dic6, S3×C20, C5×D12, C5×C3⋊D4, D60, D60, C2×C60, C22×D15, D4⋊D10, C5⋊D24, Dic6⋊D5, C3×C4.Dic5, C5×C4○D12, C2×D60, C60.38D4
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2×D4, D10, D12, C22×S3, C8⋊C22, C5⋊D4, C22×D5, C2×D12, S3×D5, C2×C5⋊D4, C8⋊D6, C5⋊D12, C2×S3×D5, D4⋊D10, C2×C5⋊D12, C60.38D4

Smallest permutation representation of C60.38D4
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 75 16 120 31 105 46 90)(2 94 17 79 32 64 47 109)(3 113 18 98 33 83 48 68)(4 72 19 117 34 102 49 87)(5 91 20 76 35 61 50 106)(6 110 21 95 36 80 51 65)(7 69 22 114 37 99 52 84)(8 88 23 73 38 118 53 103)(9 107 24 92 39 77 54 62)(10 66 25 111 40 96 55 81)(11 85 26 70 41 115 56 100)(12 104 27 89 42 74 57 119)(13 63 28 108 43 93 58 78)(14 82 29 67 44 112 59 97)(15 101 30 86 45 71 60 116)
(2 60)(3 59)(4 58)(5 57)(6 56)(7 55)(8 54)(9 53)(10 52)(11 51)(12 50)(13 49)(14 48)(15 47)(16 46)(17 45)(18 44)(19 43)(20 42)(21 41)(22 40)(23 39)(24 38)(25 37)(26 36)(27 35)(28 34)(29 33)(30 32)(61 104)(62 103)(63 102)(64 101)(65 100)(66 99)(67 98)(68 97)(69 96)(70 95)(71 94)(72 93)(73 92)(74 91)(75 90)(76 89)(77 88)(78 87)(79 86)(80 85)(81 84)(82 83)(105 120)(106 119)(107 118)(108 117)(109 116)(110 115)(111 114)(112 113)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,75,16,120,31,105,46,90)(2,94,17,79,32,64,47,109)(3,113,18,98,33,83,48,68)(4,72,19,117,34,102,49,87)(5,91,20,76,35,61,50,106)(6,110,21,95,36,80,51,65)(7,69,22,114,37,99,52,84)(8,88,23,73,38,118,53,103)(9,107,24,92,39,77,54,62)(10,66,25,111,40,96,55,81)(11,85,26,70,41,115,56,100)(12,104,27,89,42,74,57,119)(13,63,28,108,43,93,58,78)(14,82,29,67,44,112,59,97)(15,101,30,86,45,71,60,116), (2,60)(3,59)(4,58)(5,57)(6,56)(7,55)(8,54)(9,53)(10,52)(11,51)(12,50)(13,49)(14,48)(15,47)(16,46)(17,45)(18,44)(19,43)(20,42)(21,41)(22,40)(23,39)(24,38)(25,37)(26,36)(27,35)(28,34)(29,33)(30,32)(61,104)(62,103)(63,102)(64,101)(65,100)(66,99)(67,98)(68,97)(69,96)(70,95)(71,94)(72,93)(73,92)(74,91)(75,90)(76,89)(77,88)(78,87)(79,86)(80,85)(81,84)(82,83)(105,120)(106,119)(107,118)(108,117)(109,116)(110,115)(111,114)(112,113)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,75,16,120,31,105,46,90)(2,94,17,79,32,64,47,109)(3,113,18,98,33,83,48,68)(4,72,19,117,34,102,49,87)(5,91,20,76,35,61,50,106)(6,110,21,95,36,80,51,65)(7,69,22,114,37,99,52,84)(8,88,23,73,38,118,53,103)(9,107,24,92,39,77,54,62)(10,66,25,111,40,96,55,81)(11,85,26,70,41,115,56,100)(12,104,27,89,42,74,57,119)(13,63,28,108,43,93,58,78)(14,82,29,67,44,112,59,97)(15,101,30,86,45,71,60,116), (2,60)(3,59)(4,58)(5,57)(6,56)(7,55)(8,54)(9,53)(10,52)(11,51)(12,50)(13,49)(14,48)(15,47)(16,46)(17,45)(18,44)(19,43)(20,42)(21,41)(22,40)(23,39)(24,38)(25,37)(26,36)(27,35)(28,34)(29,33)(30,32)(61,104)(62,103)(63,102)(64,101)(65,100)(66,99)(67,98)(68,97)(69,96)(70,95)(71,94)(72,93)(73,92)(74,91)(75,90)(76,89)(77,88)(78,87)(79,86)(80,85)(81,84)(82,83)(105,120)(106,119)(107,118)(108,117)(109,116)(110,115)(111,114)(112,113) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,75,16,120,31,105,46,90),(2,94,17,79,32,64,47,109),(3,113,18,98,33,83,48,68),(4,72,19,117,34,102,49,87),(5,91,20,76,35,61,50,106),(6,110,21,95,36,80,51,65),(7,69,22,114,37,99,52,84),(8,88,23,73,38,118,53,103),(9,107,24,92,39,77,54,62),(10,66,25,111,40,96,55,81),(11,85,26,70,41,115,56,100),(12,104,27,89,42,74,57,119),(13,63,28,108,43,93,58,78),(14,82,29,67,44,112,59,97),(15,101,30,86,45,71,60,116)], [(2,60),(3,59),(4,58),(5,57),(6,56),(7,55),(8,54),(9,53),(10,52),(11,51),(12,50),(13,49),(14,48),(15,47),(16,46),(17,45),(18,44),(19,43),(20,42),(21,41),(22,40),(23,39),(24,38),(25,37),(26,36),(27,35),(28,34),(29,33),(30,32),(61,104),(62,103),(63,102),(64,101),(65,100),(66,99),(67,98),(68,97),(69,96),(70,95),(71,94),(72,93),(73,92),(74,91),(75,90),(76,89),(77,88),(78,87),(79,86),(80,85),(81,84),(82,83),(105,120),(106,119),(107,118),(108,117),(109,116),(110,115),(111,114),(112,113)]])

57 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C5A5B6A6B8A8B10A10B10C10D10E10F10G10H12A12B12C15A15B20A20B20C20D20E20F20G20H20I20J24A24B24C24D30A···30F60A···60H
order122222344455668810101010101010101212121515202020202020202020202424242430···3060···60
size11212606022212222420202244121212122244422224412121212202020204···44···4

57 irreducible representations

dim111111222222222222244444444
type+++++++++++++++++++++++++
imageC1C2C2C2C2C2S3D4D4D5D6D6D10D10D10D12D12C5⋊D4C5⋊D4C8⋊C22S3×D5C8⋊D6C5⋊D12C2×S3×D5C5⋊D12D4⋊D10C60.38D4
kernelC60.38D4C5⋊D24Dic6⋊D5C3×C4.Dic5C5×C4○D12C2×D60C4.Dic5C60C2×C30C4○D12C52C8C2×C20Dic6D12C2×C12C20C2×C10C12C2×C6C15C2×C4C5C4C4C22C3C1
# reps122111111221222224412222248

Matrix representation of C60.38D4 in GL4(𝔽241) generated by

1842100
2205000
222222057
219180184235
,
214157153235
226278588
162122784
6422515214
,
1000
5124000
12042443
13712178197
G:=sub<GL(4,GF(241))| [184,220,22,219,21,50,22,180,0,0,220,184,0,0,57,235],[214,226,16,64,157,27,212,225,153,85,27,15,235,88,84,214],[1,51,120,137,0,240,42,121,0,0,44,78,0,0,3,197] >;

C60.38D4 in GAP, Magma, Sage, TeX

C_{60}._{38}D_4
% in TeX

G:=Group("C60.38D4");
// GroupNames label

G:=SmallGroup(480,381);
// by ID

G=gap.SmallGroup(480,381);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,56,141,422,100,346,80,1356,18822]);
// Polycyclic

G:=Group<a,b,c|a^60=c^2=1,b^4=a^30,b*a*b^-1=a^19,c*a*c=a^-1,c*b*c=a^30*b^3>;
// generators/relations

׿
×
𝔽