# Extensions 1→N→G→Q→1 with N=C3×D5 and Q=M4(2)

Direct product G=N×Q with N=C3×D5 and Q=M4(2)
dρLabelID
C3×D5×M4(2)1204C3xD5xM4(2)480,699

Semidirect products G=N:Q with N=C3×D5 and Q=M4(2)
extensionφ:Q→Out NdρLabelID
(C3×D5)⋊M4(2) = C5⋊C8⋊D6φ: M4(2)/C4C22 ⊆ Out C3×D51208(C3xD5):M4(2)480,993
(C3×D5)⋊2M4(2) = D5×C8⋊S3φ: M4(2)/C8C2 ⊆ Out C3×D51204(C3xD5):2M4(2)480,320
(C3×D5)⋊3M4(2) = D5×C4.Dic3φ: M4(2)/C2×C4C2 ⊆ Out C3×D51204(C3xD5):3M4(2)480,358
(C3×D5)⋊4M4(2) = C60.59(C2×C4)φ: M4(2)/C2×C4C2 ⊆ Out C3×D51204(C3xD5):4M4(2)480,1062
(C3×D5)⋊5M4(2) = C3×D5⋊M4(2)φ: M4(2)/C2×C4C2 ⊆ Out C3×D51204(C3xD5):5M4(2)480,1049

Non-split extensions G=N.Q with N=C3×D5 and Q=M4(2)
extensionφ:Q→Out NdρLabelID
(C3×D5).1M4(2) = C30.3C42φ: M4(2)/C4C22 ⊆ Out C3×D51208(C3xD5).1M4(2)480,225
(C3×D5).2M4(2) = C30.4C42φ: M4(2)/C4C22 ⊆ Out C3×D51208(C3xD5).2M4(2)480,226
(C3×D5).3M4(2) = C24⋊F5φ: M4(2)/C8C2 ⊆ Out C3×D51204(C3xD5).3M4(2)480,297
(C3×D5).4M4(2) = C3×C8⋊F5φ: M4(2)/C8C2 ⊆ Out C3×D51204(C3xD5).4M4(2)480,272

׿
×
𝔽