Extensions 1→N→G→Q→1 with N=C9 and Q=C3×D9

Direct product G=N×Q with N=C9 and Q=C3×D9
dρLabelID
D9×C3×C954D9xC3xC9486,91

Semidirect products G=N:Q with N=C9 and Q=C3×D9
extensionφ:Q→Aut NdρLabelID
C9⋊(C3×D9) = C929C6φ: C3×D9/C9C6 ⊆ Aut C981C9:(C3xD9)486,144
C92(C3×D9) = D9×3- 1+2φ: C3×D9/D9C3 ⊆ Aut C9546C9:2(C3xD9)486,101
C93(C3×D9) = C3×C9⋊D9φ: C3×D9/C3×C9C2 ⊆ Aut C9162C9:3(C3xD9)486,134

Non-split extensions G=N.Q with N=C9 and Q=C3×D9
extensionφ:Q→Aut NdρLabelID
C9.(C3×D9) = He3.5D9φ: C3×D9/C9C6 ⊆ Aut C9816+C9.(C3xD9)486,163
C9.2(C3×D9) = C3×D81φ: C3×D9/C3×C9C2 ⊆ Aut C91622C9.2(C3xD9)486,32
C9.3(C3×D9) = C81⋊C6φ: C3×D9/C3×C9C2 ⊆ Aut C9816+C9.3(C3xD9)486,34
C9.4(C3×D9) = C923C6φ: C3×D9/C3×C9C2 ⊆ Aut C981C9.4(C3xD9)486,141
C9.5(C3×D9) = C3×C27⋊S3φ: C3×D9/C3×C9C2 ⊆ Aut C9162C9.5(C3xD9)486,160
C9.6(C3×D9) = C33.5D9φ: C3×D9/C3×C9C2 ⊆ Aut C981C9.6(C3xD9)486,162
C9.7(C3×D9) = D9×C27central extension (φ=1)542C9.7(C3xD9)486,14

׿
×
𝔽