extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C27)⋊1C6 = C32⋊D27 | φ: C6/C1 → C6 ⊆ Aut C3×C27 | 81 | | (C3xC27):1C6 | 486,17 |
(C3×C27)⋊2C6 = He3.D9 | φ: C6/C1 → C6 ⊆ Aut C3×C27 | 81 | 6+ | (C3xC27):2C6 | 486,27 |
(C3×C27)⋊3C6 = He3.2D9 | φ: C6/C1 → C6 ⊆ Aut C3×C27 | 81 | 6+ | (C3xC27):3C6 | 486,29 |
(C3×C27)⋊4C6 = C3×C27⋊C6 | φ: C6/C1 → C6 ⊆ Aut C3×C27 | 54 | 6 | (C3xC27):4C6 | 486,113 |
(C3×C27)⋊5C6 = C33.5D9 | φ: C6/C1 → C6 ⊆ Aut C3×C27 | 81 | | (C3xC27):5C6 | 486,162 |
(C3×C27)⋊6C6 = He3.5D9 | φ: C6/C1 → C6 ⊆ Aut C3×C27 | 81 | 6+ | (C3xC27):6C6 | 486,163 |
(C3×C27)⋊7C6 = S3×C27⋊C3 | φ: C6/C1 → C6 ⊆ Aut C3×C27 | 54 | 6 | (C3xC27):7C6 | 486,114 |
(C3×C27)⋊8C6 = C2×C32⋊C27 | φ: C6/C2 → C3 ⊆ Aut C3×C27 | 162 | | (C3xC27):8C6 | 486,72 |
(C3×C27)⋊9C6 = C2×C9.5He3 | φ: C6/C2 → C3 ⊆ Aut C3×C27 | 162 | 3 | (C3xC27):9C6 | 486,79 |
(C3×C27)⋊10C6 = C2×C9.6He3 | φ: C6/C2 → C3 ⊆ Aut C3×C27 | 162 | 3 | (C3xC27):10C6 | 486,80 |
(C3×C27)⋊11C6 = C6×C27⋊C3 | φ: C6/C2 → C3 ⊆ Aut C3×C27 | 162 | | (C3xC27):11C6 | 486,208 |
(C3×C27)⋊12C6 = C2×C27○He3 | φ: C6/C2 → C3 ⊆ Aut C3×C27 | 162 | 3 | (C3xC27):12C6 | 486,209 |
(C3×C27)⋊13C6 = S3×C3×C27 | φ: C6/C3 → C2 ⊆ Aut C3×C27 | 162 | | (C3xC27):13C6 | 486,112 |
(C3×C27)⋊14C6 = C32×D27 | φ: C6/C3 → C2 ⊆ Aut C3×C27 | 162 | | (C3xC27):14C6 | 486,111 |
(C3×C27)⋊15C6 = C3×C27⋊S3 | φ: C6/C3 → C2 ⊆ Aut C3×C27 | 162 | | (C3xC27):15C6 | 486,160 |