Copied to
clipboard

G = C9xD27order 486 = 2·35

Direct product of C9 and D27

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C9xD27, C27:5C18, C92.3S3, (C9xC27):2C2, C9.3(S3xC9), C3.2(C9xD9), (C3xC9).6D9, (C3xC27).6C6, C3.4(C3xD27), (C3xD27).2C3, C32.12(C3xD9), (C3xC9).52(C3xS3), SmallGroup(486,13)

Series: Derived Chief Lower central Upper central

C1C27 — C9xD27
C1C3C9C27C3xC27C9xC27 — C9xD27
C27 — C9xD27
C1C9

Generators and relations for C9xD27
 G = < a,b,c | a9=b27=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 156 in 36 conjugacy classes, 15 normal (all characteristic)
Quotients: C1, C2, C3, S3, C6, C9, D9, C18, C3xS3, D27, C3xD9, S3xC9, C9xD9, C3xD27, C9xD27
27C2
2C3
9S3
27C6
2C9
2C9
2C9
2C9
2C9
3D9
9C3xS3
27C18
2C27
2C27
2C3xC9
2C27
2C27
3C3xD9
9S3xC9
2C3xC27
3C9xD9

Smallest permutation representation of C9xD27
On 54 points
Generators in S54
(1 4 7 10 13 16 19 22 25)(2 5 8 11 14 17 20 23 26)(3 6 9 12 15 18 21 24 27)(28 52 49 46 43 40 37 34 31)(29 53 50 47 44 41 38 35 32)(30 54 51 48 45 42 39 36 33)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)
(1 35)(2 34)(3 33)(4 32)(5 31)(6 30)(7 29)(8 28)(9 54)(10 53)(11 52)(12 51)(13 50)(14 49)(15 48)(16 47)(17 46)(18 45)(19 44)(20 43)(21 42)(22 41)(23 40)(24 39)(25 38)(26 37)(27 36)

G:=sub<Sym(54)| (1,4,7,10,13,16,19,22,25)(2,5,8,11,14,17,20,23,26)(3,6,9,12,15,18,21,24,27)(28,52,49,46,43,40,37,34,31)(29,53,50,47,44,41,38,35,32)(30,54,51,48,45,42,39,36,33), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54), (1,35)(2,34)(3,33)(4,32)(5,31)(6,30)(7,29)(8,28)(9,54)(10,53)(11,52)(12,51)(13,50)(14,49)(15,48)(16,47)(17,46)(18,45)(19,44)(20,43)(21,42)(22,41)(23,40)(24,39)(25,38)(26,37)(27,36)>;

G:=Group( (1,4,7,10,13,16,19,22,25)(2,5,8,11,14,17,20,23,26)(3,6,9,12,15,18,21,24,27)(28,52,49,46,43,40,37,34,31)(29,53,50,47,44,41,38,35,32)(30,54,51,48,45,42,39,36,33), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54), (1,35)(2,34)(3,33)(4,32)(5,31)(6,30)(7,29)(8,28)(9,54)(10,53)(11,52)(12,51)(13,50)(14,49)(15,48)(16,47)(17,46)(18,45)(19,44)(20,43)(21,42)(22,41)(23,40)(24,39)(25,38)(26,37)(27,36) );

G=PermutationGroup([[(1,4,7,10,13,16,19,22,25),(2,5,8,11,14,17,20,23,26),(3,6,9,12,15,18,21,24,27),(28,52,49,46,43,40,37,34,31),(29,53,50,47,44,41,38,35,32),(30,54,51,48,45,42,39,36,33)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)], [(1,35),(2,34),(3,33),(4,32),(5,31),(6,30),(7,29),(8,28),(9,54),(10,53),(11,52),(12,51),(13,50),(14,49),(15,48),(16,47),(17,46),(18,45),(19,44),(20,43),(21,42),(22,41),(23,40),(24,39),(25,38),(26,37),(27,36)]])

135 conjugacy classes

class 1  2 3A3B3C3D3E6A6B9A···9F9G···9AM18A···18F27A···27CC
order1233333669···99···918···1827···27
size1271122227271···12···227···272···2

135 irreducible representations

dim111111222222222
type+++++
imageC1C2C3C6C9C18S3D9C3xS3D27S3xC9C3xD9C9xD9C3xD27C9xD27
kernelC9xD27C9xC27C3xD27C3xC27D27C27C92C3xC9C3xC9C9C9C32C3C3C1
# reps112266132966181854

Matrix representation of C9xD27 in GL2(F109) generated by

160
016
,
534
022
,
8899
4421
G:=sub<GL(2,GF(109))| [16,0,0,16],[5,0,34,22],[88,44,99,21] >;

C9xD27 in GAP, Magma, Sage, TeX

C_9\times D_{27}
% in TeX

G:=Group("C9xD27");
// GroupNames label

G:=SmallGroup(486,13);
// by ID

G=gap.SmallGroup(486,13);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,43,2163,381,8104,208,11669]);
// Polycyclic

G:=Group<a,b,c|a^9=b^27=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C9xD27 in TeX

׿
x
:
Z
F
o
wr
Q
<