Copied to
clipboard

G = C273C18order 486 = 2·35

The semidirect product of C27 and C18 acting via C18/C3=C6

metacyclic, supersoluble, monomial

Aliases: C273C18, D272C9, C92.1S3, C272C9⋊C2, (C3×C27).C6, C9.4(S3×C9), (C3×D27).C3, C3.3(C9×D9), (C3×C9).1D9, C3.2(C27⋊C6), C32.13(C3×D9), (C3×C9).53(C3×S3), SmallGroup(486,15)

Series: Derived Chief Lower central Upper central

C1C27 — C273C18
C1C3C9C27C3×C27C272C9 — C273C18
C27 — C273C18
C1C3

Generators and relations for C273C18
 G = < a,b | a27=b18=1, bab-1=a17 >

27C2
2C3
9S3
27C6
2C9
3C9
6C9
3D9
9C3×S3
27C18
2C27
2C3×C9
2C27
2C27
2C27
3C3×D9
9S3×C9
2C3×C27
3C9×D9

Smallest permutation representation of C273C18
On 54 points
Generators in S54
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)
(1 32 13 47 25 35 10 50 22 38 7 53 19 41 4 29 16 44)(2 40 23 46 17 52 11 31 5 37 26 43 20 49 14 28 8 34)(3 48 6 45 9 42 12 39 15 36 18 33 21 30 24 54 27 51)

G:=sub<Sym(54)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54), (1,32,13,47,25,35,10,50,22,38,7,53,19,41,4,29,16,44)(2,40,23,46,17,52,11,31,5,37,26,43,20,49,14,28,8,34)(3,48,6,45,9,42,12,39,15,36,18,33,21,30,24,54,27,51)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54), (1,32,13,47,25,35,10,50,22,38,7,53,19,41,4,29,16,44)(2,40,23,46,17,52,11,31,5,37,26,43,20,49,14,28,8,34)(3,48,6,45,9,42,12,39,15,36,18,33,21,30,24,54,27,51) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)], [(1,32,13,47,25,35,10,50,22,38,7,53,19,41,4,29,16,44),(2,40,23,46,17,52,11,31,5,37,26,43,20,49,14,28,8,34),(3,48,6,45,9,42,12,39,15,36,18,33,21,30,24,54,27,51)]])

63 conjugacy classes

class 1  2 3A3B3C3D3E6A6B9A···9I9J···9O9P···9U18A···18F27A···27AA
order1233333669···99···99···918···1827···27
size1271122227272···23···36···627···276···6

63 irreducible representations

dim11111122222266
type+++++
imageC1C2C3C6C9C18S3D9C3×S3S3×C9C3×D9C9×D9C27⋊C6C273C18
kernelC273C18C272C9C3×D27C3×C27D27C27C92C3×C9C3×C9C9C32C3C3C1
# reps112266132661836

Matrix representation of C273C18 in GL6(𝔽109)

100980000
64927000
99150000
00060044
00040073
0001410549
,
0006600
00087270
00021016
6600000
87270000
21016000

G:=sub<GL(6,GF(109))| [100,64,99,0,0,0,98,9,15,0,0,0,0,27,0,0,0,0,0,0,0,60,40,14,0,0,0,0,0,105,0,0,0,44,73,49],[0,0,0,66,87,21,0,0,0,0,27,0,0,0,0,0,0,16,66,87,21,0,0,0,0,27,0,0,0,0,0,0,16,0,0,0] >;

C273C18 in GAP, Magma, Sage, TeX

C_{27}\rtimes_3C_{18}
% in TeX

G:=Group("C27:3C18");
// GroupNames label

G:=SmallGroup(486,15);
// by ID

G=gap.SmallGroup(486,15);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,43,2163,2169,381,8104,208,11669]);
// Polycyclic

G:=Group<a,b|a^27=b^18=1,b*a*b^-1=a^17>;
// generators/relations

Export

Subgroup lattice of C273C18 in TeX

׿
×
𝔽