Copied to
clipboard

G = C5xDic25order 500 = 22·53

Direct product of C5 and Dic25

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C5xDic25, C25:5C20, C50.3C10, C10.4D25, C52.3Dic5, (C5xC25):8C4, C2.(C5xD25), (C5xC50).2C2, C10.1(C5xD5), (C5xC10).5D5, C5.1(C5xDic5), SmallGroup(500,6)

Series: Derived Chief Lower central Upper central

C1C25 — C5xDic25
C1C5C25C50C5xC50 — C5xDic25
C25 — C5xDic25
C1C10

Generators and relations for C5xDic25
 G = < a,b,c | a5=b50=1, c2=b25, ab=ba, ac=ca, cbc-1=b-1 >

Subgroups: 90 in 26 conjugacy classes, 14 normal (all characteristic)
Quotients: C1, C2, C4, C5, D5, C10, Dic5, C20, D25, C5xD5, Dic25, C5xDic5, C5xD25, C5xDic25
2C5
2C5
25C4
2C10
2C10
2C25
2C25
5Dic5
25C20
2C50
2C50
5C5xDic5

Smallest permutation representation of C5xDic25
On 100 points
Generators in S100
(1 11 21 31 41)(2 12 22 32 42)(3 13 23 33 43)(4 14 24 34 44)(5 15 25 35 45)(6 16 26 36 46)(7 17 27 37 47)(8 18 28 38 48)(9 19 29 39 49)(10 20 30 40 50)(51 91 81 71 61)(52 92 82 72 62)(53 93 83 73 63)(54 94 84 74 64)(55 95 85 75 65)(56 96 86 76 66)(57 97 87 77 67)(58 98 88 78 68)(59 99 89 79 69)(60 100 90 80 70)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)
(1 68 26 93)(2 67 27 92)(3 66 28 91)(4 65 29 90)(5 64 30 89)(6 63 31 88)(7 62 32 87)(8 61 33 86)(9 60 34 85)(10 59 35 84)(11 58 36 83)(12 57 37 82)(13 56 38 81)(14 55 39 80)(15 54 40 79)(16 53 41 78)(17 52 42 77)(18 51 43 76)(19 100 44 75)(20 99 45 74)(21 98 46 73)(22 97 47 72)(23 96 48 71)(24 95 49 70)(25 94 50 69)

G:=sub<Sym(100)| (1,11,21,31,41)(2,12,22,32,42)(3,13,23,33,43)(4,14,24,34,44)(5,15,25,35,45)(6,16,26,36,46)(7,17,27,37,47)(8,18,28,38,48)(9,19,29,39,49)(10,20,30,40,50)(51,91,81,71,61)(52,92,82,72,62)(53,93,83,73,63)(54,94,84,74,64)(55,95,85,75,65)(56,96,86,76,66)(57,97,87,77,67)(58,98,88,78,68)(59,99,89,79,69)(60,100,90,80,70), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (1,68,26,93)(2,67,27,92)(3,66,28,91)(4,65,29,90)(5,64,30,89)(6,63,31,88)(7,62,32,87)(8,61,33,86)(9,60,34,85)(10,59,35,84)(11,58,36,83)(12,57,37,82)(13,56,38,81)(14,55,39,80)(15,54,40,79)(16,53,41,78)(17,52,42,77)(18,51,43,76)(19,100,44,75)(20,99,45,74)(21,98,46,73)(22,97,47,72)(23,96,48,71)(24,95,49,70)(25,94,50,69)>;

G:=Group( (1,11,21,31,41)(2,12,22,32,42)(3,13,23,33,43)(4,14,24,34,44)(5,15,25,35,45)(6,16,26,36,46)(7,17,27,37,47)(8,18,28,38,48)(9,19,29,39,49)(10,20,30,40,50)(51,91,81,71,61)(52,92,82,72,62)(53,93,83,73,63)(54,94,84,74,64)(55,95,85,75,65)(56,96,86,76,66)(57,97,87,77,67)(58,98,88,78,68)(59,99,89,79,69)(60,100,90,80,70), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (1,68,26,93)(2,67,27,92)(3,66,28,91)(4,65,29,90)(5,64,30,89)(6,63,31,88)(7,62,32,87)(8,61,33,86)(9,60,34,85)(10,59,35,84)(11,58,36,83)(12,57,37,82)(13,56,38,81)(14,55,39,80)(15,54,40,79)(16,53,41,78)(17,52,42,77)(18,51,43,76)(19,100,44,75)(20,99,45,74)(21,98,46,73)(22,97,47,72)(23,96,48,71)(24,95,49,70)(25,94,50,69) );

G=PermutationGroup([[(1,11,21,31,41),(2,12,22,32,42),(3,13,23,33,43),(4,14,24,34,44),(5,15,25,35,45),(6,16,26,36,46),(7,17,27,37,47),(8,18,28,38,48),(9,19,29,39,49),(10,20,30,40,50),(51,91,81,71,61),(52,92,82,72,62),(53,93,83,73,63),(54,94,84,74,64),(55,95,85,75,65),(56,96,86,76,66),(57,97,87,77,67),(58,98,88,78,68),(59,99,89,79,69),(60,100,90,80,70)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)], [(1,68,26,93),(2,67,27,92),(3,66,28,91),(4,65,29,90),(5,64,30,89),(6,63,31,88),(7,62,32,87),(8,61,33,86),(9,60,34,85),(10,59,35,84),(11,58,36,83),(12,57,37,82),(13,56,38,81),(14,55,39,80),(15,54,40,79),(16,53,41,78),(17,52,42,77),(18,51,43,76),(19,100,44,75),(20,99,45,74),(21,98,46,73),(22,97,47,72),(23,96,48,71),(24,95,49,70),(25,94,50,69)]])

140 conjugacy classes

class 1  2 4A4B5A5B5C5D5E···5N10A10B10C10D10E···10N20A···20H25A···25AX50A···50AX
order124455555···51010101010···1020···2025···2550···50
size11252511112···211112···225···252···22···2

140 irreducible representations

dim11111122222222
type+++-+-
imageC1C2C4C5C10C20D5Dic5D25C5xD5Dic25C5xDic5C5xD25C5xDic25
kernelC5xDic25C5xC50C5xC25Dic25C50C25C5xC10C52C10C10C5C5C2C1
# reps112448221081084040

Matrix representation of C5xDic25 in GL3(F101) generated by

3600
0870
0087
,
10000
0810
005
,
9100
001
010
G:=sub<GL(3,GF(101))| [36,0,0,0,87,0,0,0,87],[100,0,0,0,81,0,0,0,5],[91,0,0,0,0,1,0,1,0] >;

C5xDic25 in GAP, Magma, Sage, TeX

C_5\times {\rm Dic}_{25}
% in TeX

G:=Group("C5xDic25");
// GroupNames label

G:=SmallGroup(500,6);
// by ID

G=gap.SmallGroup(500,6);
# by ID

G:=PCGroup([5,-2,-5,-2,-5,-5,50,3603,418,10004]);
// Polycyclic

G:=Group<a,b,c|a^5=b^50=1,c^2=b^25,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C5xDic25 in TeX

׿
x
:
Z
F
o
wr
Q
<