metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: Dic25, C25⋊2C4, C50.C2, C2.D25, C5.Dic5, C10.1D5, SmallGroup(100,1)
Series: Derived ►Chief ►Lower central ►Upper central
C25 — Dic25 |
Generators and relations for Dic25
G = < a,b | a50=1, b2=a25, bab-1=a-1 >
Character table of Dic25
class | 1 | 2 | 4A | 4B | 5A | 5B | 10A | 10B | 25A | 25B | 25C | 25D | 25E | 25F | 25G | 25H | 25I | 25J | 50A | 50B | 50C | 50D | 50E | 50F | 50G | 50H | 50I | 50J | |
size | 1 | 1 | 25 | 25 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | -i | i | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ4 | 1 | -1 | i | -i | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ5 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ6 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | ζ2522+ζ253 | ζ2521+ζ254 | ζ2519+ζ256 | ζ2516+ζ259 | ζ2524+ζ25 | ζ2513+ζ2512 | ζ2523+ζ252 | ζ2517+ζ258 | ζ2514+ζ2511 | ζ2518+ζ257 | ζ2513+ζ2512 | ζ2523+ζ252 | ζ2517+ζ258 | ζ2514+ζ2511 | ζ2521+ζ254 | ζ2519+ζ256 | ζ2516+ζ259 | ζ2524+ζ25 | ζ2518+ζ257 | ζ2522+ζ253 | orthogonal lifted from D25 |
ρ7 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | ζ2516+ζ259 | ζ2513+ζ2512 | ζ2518+ζ257 | ζ2523+ζ252 | ζ2522+ζ253 | ζ2514+ζ2511 | ζ2519+ζ256 | ζ2524+ζ25 | ζ2517+ζ258 | ζ2521+ζ254 | ζ2514+ζ2511 | ζ2519+ζ256 | ζ2524+ζ25 | ζ2517+ζ258 | ζ2513+ζ2512 | ζ2518+ζ257 | ζ2523+ζ252 | ζ2522+ζ253 | ζ2521+ζ254 | ζ2516+ζ259 | orthogonal lifted from D25 |
ρ8 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ9 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | ζ2517+ζ258 | ζ2519+ζ256 | ζ2516+ζ259 | ζ2524+ζ25 | ζ2514+ζ2511 | ζ2518+ζ257 | ζ2522+ζ253 | ζ2513+ζ2512 | ζ2521+ζ254 | ζ2523+ζ252 | ζ2518+ζ257 | ζ2522+ζ253 | ζ2513+ζ2512 | ζ2521+ζ254 | ζ2519+ζ256 | ζ2516+ζ259 | ζ2524+ζ25 | ζ2514+ζ2511 | ζ2523+ζ252 | ζ2517+ζ258 | orthogonal lifted from D25 |
ρ10 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | ζ2518+ζ257 | ζ2524+ζ25 | ζ2514+ζ2511 | ζ2521+ζ254 | ζ2519+ζ256 | ζ2522+ζ253 | ζ2513+ζ2512 | ζ2523+ζ252 | ζ2516+ζ259 | ζ2517+ζ258 | ζ2522+ζ253 | ζ2513+ζ2512 | ζ2523+ζ252 | ζ2516+ζ259 | ζ2524+ζ25 | ζ2514+ζ2511 | ζ2521+ζ254 | ζ2519+ζ256 | ζ2517+ζ258 | ζ2518+ζ257 | orthogonal lifted from D25 |
ρ11 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | ζ2514+ζ2511 | ζ2523+ζ252 | ζ2522+ζ253 | ζ2517+ζ258 | ζ2513+ζ2512 | ζ2519+ζ256 | ζ2524+ζ25 | ζ2521+ζ254 | ζ2518+ζ257 | ζ2516+ζ259 | ζ2519+ζ256 | ζ2524+ζ25 | ζ2521+ζ254 | ζ2518+ζ257 | ζ2523+ζ252 | ζ2522+ζ253 | ζ2517+ζ258 | ζ2513+ζ2512 | ζ2516+ζ259 | ζ2514+ζ2511 | orthogonal lifted from D25 |
ρ12 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | ζ2521+ζ254 | ζ2522+ζ253 | ζ2517+ζ258 | ζ2513+ζ2512 | ζ2518+ζ257 | ζ2516+ζ259 | ζ2514+ζ2511 | ζ2519+ζ256 | ζ2523+ζ252 | ζ2524+ζ25 | ζ2516+ζ259 | ζ2514+ζ2511 | ζ2519+ζ256 | ζ2523+ζ252 | ζ2522+ζ253 | ζ2517+ζ258 | ζ2513+ζ2512 | ζ2518+ζ257 | ζ2524+ζ25 | ζ2521+ζ254 | orthogonal lifted from D25 |
ρ13 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | ζ2524+ζ25 | ζ2518+ζ257 | ζ2523+ζ252 | ζ2522+ζ253 | ζ2517+ζ258 | ζ2521+ζ254 | ζ2516+ζ259 | ζ2514+ζ2511 | ζ2513+ζ2512 | ζ2519+ζ256 | ζ2521+ζ254 | ζ2516+ζ259 | ζ2514+ζ2511 | ζ2513+ζ2512 | ζ2518+ζ257 | ζ2523+ζ252 | ζ2522+ζ253 | ζ2517+ζ258 | ζ2519+ζ256 | ζ2524+ζ25 | orthogonal lifted from D25 |
ρ14 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | ζ2519+ζ256 | ζ2517+ζ258 | ζ2513+ζ2512 | ζ2518+ζ257 | ζ2523+ζ252 | ζ2524+ζ25 | ζ2521+ζ254 | ζ2516+ζ259 | ζ2522+ζ253 | ζ2514+ζ2511 | ζ2524+ζ25 | ζ2521+ζ254 | ζ2516+ζ259 | ζ2522+ζ253 | ζ2517+ζ258 | ζ2513+ζ2512 | ζ2518+ζ257 | ζ2523+ζ252 | ζ2514+ζ2511 | ζ2519+ζ256 | orthogonal lifted from D25 |
ρ15 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | ζ2523+ζ252 | ζ2514+ζ2511 | ζ2521+ζ254 | ζ2519+ζ256 | ζ2516+ζ259 | ζ2517+ζ258 | ζ2518+ζ257 | ζ2522+ζ253 | ζ2524+ζ25 | ζ2513+ζ2512 | ζ2517+ζ258 | ζ2518+ζ257 | ζ2522+ζ253 | ζ2524+ζ25 | ζ2514+ζ2511 | ζ2521+ζ254 | ζ2519+ζ256 | ζ2516+ζ259 | ζ2513+ζ2512 | ζ2523+ζ252 | orthogonal lifted from D25 |
ρ16 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | ζ2513+ζ2512 | ζ2516+ζ259 | ζ2524+ζ25 | ζ2514+ζ2511 | ζ2521+ζ254 | ζ2523+ζ252 | ζ2517+ζ258 | ζ2518+ζ257 | ζ2519+ζ256 | ζ2522+ζ253 | ζ2523+ζ252 | ζ2517+ζ258 | ζ2518+ζ257 | ζ2519+ζ256 | ζ2516+ζ259 | ζ2524+ζ25 | ζ2514+ζ2511 | ζ2521+ζ254 | ζ2522+ζ253 | ζ2513+ζ2512 | orthogonal lifted from D25 |
ρ17 | 2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | ζ2516+ζ259 | ζ2513+ζ2512 | ζ2518+ζ257 | ζ2523+ζ252 | ζ2522+ζ253 | ζ2514+ζ2511 | ζ2519+ζ256 | ζ2524+ζ25 | ζ2517+ζ258 | ζ2521+ζ254 | -ζ2514-ζ2511 | -ζ2519-ζ256 | -ζ2524-ζ25 | -ζ2517-ζ258 | -ζ2513-ζ2512 | -ζ2518-ζ257 | -ζ2523-ζ252 | -ζ2522-ζ253 | -ζ2521-ζ254 | -ζ2516-ζ259 | symplectic faithful, Schur index 2 |
ρ18 | 2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | ζ2521+ζ254 | ζ2522+ζ253 | ζ2517+ζ258 | ζ2513+ζ2512 | ζ2518+ζ257 | ζ2516+ζ259 | ζ2514+ζ2511 | ζ2519+ζ256 | ζ2523+ζ252 | ζ2524+ζ25 | -ζ2516-ζ259 | -ζ2514-ζ2511 | -ζ2519-ζ256 | -ζ2523-ζ252 | -ζ2522-ζ253 | -ζ2517-ζ258 | -ζ2513-ζ2512 | -ζ2518-ζ257 | -ζ2524-ζ25 | -ζ2521-ζ254 | symplectic faithful, Schur index 2 |
ρ19 | 2 | -2 | 0 | 0 | 2 | 2 | -2 | -2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | symplectic lifted from Dic5, Schur index 2 |
ρ20 | 2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | ζ2523+ζ252 | ζ2514+ζ2511 | ζ2521+ζ254 | ζ2519+ζ256 | ζ2516+ζ259 | ζ2517+ζ258 | ζ2518+ζ257 | ζ2522+ζ253 | ζ2524+ζ25 | ζ2513+ζ2512 | -ζ2517-ζ258 | -ζ2518-ζ257 | -ζ2522-ζ253 | -ζ2524-ζ25 | -ζ2514-ζ2511 | -ζ2521-ζ254 | -ζ2519-ζ256 | -ζ2516-ζ259 | -ζ2513-ζ2512 | -ζ2523-ζ252 | symplectic faithful, Schur index 2 |
ρ21 | 2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | ζ2524+ζ25 | ζ2518+ζ257 | ζ2523+ζ252 | ζ2522+ζ253 | ζ2517+ζ258 | ζ2521+ζ254 | ζ2516+ζ259 | ζ2514+ζ2511 | ζ2513+ζ2512 | ζ2519+ζ256 | -ζ2521-ζ254 | -ζ2516-ζ259 | -ζ2514-ζ2511 | -ζ2513-ζ2512 | -ζ2518-ζ257 | -ζ2523-ζ252 | -ζ2522-ζ253 | -ζ2517-ζ258 | -ζ2519-ζ256 | -ζ2524-ζ25 | symplectic faithful, Schur index 2 |
ρ22 | 2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | ζ2517+ζ258 | ζ2519+ζ256 | ζ2516+ζ259 | ζ2524+ζ25 | ζ2514+ζ2511 | ζ2518+ζ257 | ζ2522+ζ253 | ζ2513+ζ2512 | ζ2521+ζ254 | ζ2523+ζ252 | -ζ2518-ζ257 | -ζ2522-ζ253 | -ζ2513-ζ2512 | -ζ2521-ζ254 | -ζ2519-ζ256 | -ζ2516-ζ259 | -ζ2524-ζ25 | -ζ2514-ζ2511 | -ζ2523-ζ252 | -ζ2517-ζ258 | symplectic faithful, Schur index 2 |
ρ23 | 2 | -2 | 0 | 0 | 2 | 2 | -2 | -2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | symplectic lifted from Dic5, Schur index 2 |
ρ24 | 2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | ζ2518+ζ257 | ζ2524+ζ25 | ζ2514+ζ2511 | ζ2521+ζ254 | ζ2519+ζ256 | ζ2522+ζ253 | ζ2513+ζ2512 | ζ2523+ζ252 | ζ2516+ζ259 | ζ2517+ζ258 | -ζ2522-ζ253 | -ζ2513-ζ2512 | -ζ2523-ζ252 | -ζ2516-ζ259 | -ζ2524-ζ25 | -ζ2514-ζ2511 | -ζ2521-ζ254 | -ζ2519-ζ256 | -ζ2517-ζ258 | -ζ2518-ζ257 | symplectic faithful, Schur index 2 |
ρ25 | 2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | ζ2513+ζ2512 | ζ2516+ζ259 | ζ2524+ζ25 | ζ2514+ζ2511 | ζ2521+ζ254 | ζ2523+ζ252 | ζ2517+ζ258 | ζ2518+ζ257 | ζ2519+ζ256 | ζ2522+ζ253 | -ζ2523-ζ252 | -ζ2517-ζ258 | -ζ2518-ζ257 | -ζ2519-ζ256 | -ζ2516-ζ259 | -ζ2524-ζ25 | -ζ2514-ζ2511 | -ζ2521-ζ254 | -ζ2522-ζ253 | -ζ2513-ζ2512 | symplectic faithful, Schur index 2 |
ρ26 | 2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | ζ2522+ζ253 | ζ2521+ζ254 | ζ2519+ζ256 | ζ2516+ζ259 | ζ2524+ζ25 | ζ2513+ζ2512 | ζ2523+ζ252 | ζ2517+ζ258 | ζ2514+ζ2511 | ζ2518+ζ257 | -ζ2513-ζ2512 | -ζ2523-ζ252 | -ζ2517-ζ258 | -ζ2514-ζ2511 | -ζ2521-ζ254 | -ζ2519-ζ256 | -ζ2516-ζ259 | -ζ2524-ζ25 | -ζ2518-ζ257 | -ζ2522-ζ253 | symplectic faithful, Schur index 2 |
ρ27 | 2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | ζ2514+ζ2511 | ζ2523+ζ252 | ζ2522+ζ253 | ζ2517+ζ258 | ζ2513+ζ2512 | ζ2519+ζ256 | ζ2524+ζ25 | ζ2521+ζ254 | ζ2518+ζ257 | ζ2516+ζ259 | -ζ2519-ζ256 | -ζ2524-ζ25 | -ζ2521-ζ254 | -ζ2518-ζ257 | -ζ2523-ζ252 | -ζ2522-ζ253 | -ζ2517-ζ258 | -ζ2513-ζ2512 | -ζ2516-ζ259 | -ζ2514-ζ2511 | symplectic faithful, Schur index 2 |
ρ28 | 2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | ζ2519+ζ256 | ζ2517+ζ258 | ζ2513+ζ2512 | ζ2518+ζ257 | ζ2523+ζ252 | ζ2524+ζ25 | ζ2521+ζ254 | ζ2516+ζ259 | ζ2522+ζ253 | ζ2514+ζ2511 | -ζ2524-ζ25 | -ζ2521-ζ254 | -ζ2516-ζ259 | -ζ2522-ζ253 | -ζ2517-ζ258 | -ζ2513-ζ2512 | -ζ2518-ζ257 | -ζ2523-ζ252 | -ζ2514-ζ2511 | -ζ2519-ζ256 | symplectic faithful, Schur index 2 |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)
(1 90 26 65)(2 89 27 64)(3 88 28 63)(4 87 29 62)(5 86 30 61)(6 85 31 60)(7 84 32 59)(8 83 33 58)(9 82 34 57)(10 81 35 56)(11 80 36 55)(12 79 37 54)(13 78 38 53)(14 77 39 52)(15 76 40 51)(16 75 41 100)(17 74 42 99)(18 73 43 98)(19 72 44 97)(20 71 45 96)(21 70 46 95)(22 69 47 94)(23 68 48 93)(24 67 49 92)(25 66 50 91)
G:=sub<Sym(100)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (1,90,26,65)(2,89,27,64)(3,88,28,63)(4,87,29,62)(5,86,30,61)(6,85,31,60)(7,84,32,59)(8,83,33,58)(9,82,34,57)(10,81,35,56)(11,80,36,55)(12,79,37,54)(13,78,38,53)(14,77,39,52)(15,76,40,51)(16,75,41,100)(17,74,42,99)(18,73,43,98)(19,72,44,97)(20,71,45,96)(21,70,46,95)(22,69,47,94)(23,68,48,93)(24,67,49,92)(25,66,50,91)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (1,90,26,65)(2,89,27,64)(3,88,28,63)(4,87,29,62)(5,86,30,61)(6,85,31,60)(7,84,32,59)(8,83,33,58)(9,82,34,57)(10,81,35,56)(11,80,36,55)(12,79,37,54)(13,78,38,53)(14,77,39,52)(15,76,40,51)(16,75,41,100)(17,74,42,99)(18,73,43,98)(19,72,44,97)(20,71,45,96)(21,70,46,95)(22,69,47,94)(23,68,48,93)(24,67,49,92)(25,66,50,91) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)], [(1,90,26,65),(2,89,27,64),(3,88,28,63),(4,87,29,62),(5,86,30,61),(6,85,31,60),(7,84,32,59),(8,83,33,58),(9,82,34,57),(10,81,35,56),(11,80,36,55),(12,79,37,54),(13,78,38,53),(14,77,39,52),(15,76,40,51),(16,75,41,100),(17,74,42,99),(18,73,43,98),(19,72,44,97),(20,71,45,96),(21,70,46,95),(22,69,47,94),(23,68,48,93),(24,67,49,92),(25,66,50,91)]])
Dic25 is a maximal subgroup of
C25⋊C8 Dic50 C4×D25 C25⋊D4 Dic75 Dic125 C50.C10 C50.D5 D5.D25
Dic25 is a maximal quotient of
C25⋊2C8 Dic75 Dic125 C50.D5 D5.D25
Matrix representation of Dic25 ►in GL3(𝔽101) generated by
100 | 0 | 0 |
0 | 69 | 8 |
0 | 93 | 43 |
91 | 0 | 0 |
0 | 60 | 70 |
0 | 77 | 41 |
G:=sub<GL(3,GF(101))| [100,0,0,0,69,93,0,8,43],[91,0,0,0,60,77,0,70,41] >;
Dic25 in GAP, Magma, Sage, TeX
{\rm Dic}_{25}
% in TeX
G:=Group("Dic25");
// GroupNames label
G:=SmallGroup(100,1);
// by ID
G=gap.SmallGroup(100,1);
# by ID
G:=PCGroup([4,-2,-2,-5,-5,8,434,250,1283]);
// Polycyclic
G:=Group<a,b|a^50=1,b^2=a^25,b*a*b^-1=a^-1>;
// generators/relations
Export
Subgroup lattice of Dic25 in TeX
Character table of Dic25 in TeX