extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C4○D4)⋊1C2 = D4⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):1C2 | 64,130 |
(C2×C4○D4)⋊2C2 = C22.19C24 | φ: C2/C1 → C2 ⊆ Out C2×C4○D4 | 16 | | (C2xC4oD4):2C2 | 64,206 |
(C2×C4○D4)⋊3C2 = C22.26C24 | φ: C2/C1 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):3C2 | 64,213 |
(C2×C4○D4)⋊4C2 = C22.29C24 | φ: C2/C1 → C2 ⊆ Out C2×C4○D4 | 16 | | (C2xC4oD4):4C2 | 64,216 |
(C2×C4○D4)⋊5C2 = C22.31C24 | φ: C2/C1 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):5C2 | 64,218 |
(C2×C4○D4)⋊6C2 = D4⋊5D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D4 | 16 | | (C2xC4oD4):6C2 | 64,227 |
(C2×C4○D4)⋊7C2 = D4⋊6D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):7C2 | 64,228 |
(C2×C4○D4)⋊8C2 = Q8⋊5D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):8C2 | 64,229 |
(C2×C4○D4)⋊9C2 = Q8⋊6D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):9C2 | 64,231 |
(C2×C4○D4)⋊10C2 = C2×C4○D8 | φ: C2/C1 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):10C2 | 64,253 |
(C2×C4○D4)⋊11C2 = C2×C8⋊C22 | φ: C2/C1 → C2 ⊆ Out C2×C4○D4 | 16 | | (C2xC4oD4):11C2 | 64,254 |
(C2×C4○D4)⋊12C2 = D8⋊C22 | φ: C2/C1 → C2 ⊆ Out C2×C4○D4 | 16 | 4 | (C2xC4oD4):12C2 | 64,256 |
(C2×C4○D4)⋊13C2 = C2×2+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D4 | 16 | | (C2xC4oD4):13C2 | 64,264 |
(C2×C4○D4)⋊14C2 = C2×2- 1+4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):14C2 | 64,265 |
(C2×C4○D4)⋊15C2 = C2.C25 | φ: C2/C1 → C2 ⊆ Out C2×C4○D4 | 16 | 4 | (C2xC4oD4):15C2 | 64,266 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C4○D4).1C2 = (C22×C8)⋊C2 | φ: C2/C1 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).1C2 | 64,89 |
(C2×C4○D4).2C2 = C23.C23 | φ: C2/C1 → C2 ⊆ Out C2×C4○D4 | 16 | 4 | (C2xC4oD4).2C2 | 64,91 |
(C2×C4○D4).3C2 = M4(2).8C22 | φ: C2/C1 → C2 ⊆ Out C2×C4○D4 | 16 | 4 | (C2xC4oD4).3C2 | 64,94 |
(C2×C4○D4).4C2 = C23.24D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).4C2 | 64,97 |
(C2×C4○D4).5C2 = C23.36D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).5C2 | 64,98 |
(C2×C4○D4).6C2 = C2×C4≀C2 | φ: C2/C1 → C2 ⊆ Out C2×C4○D4 | 16 | | (C2xC4oD4).6C2 | 64,101 |
(C2×C4○D4).7C2 = C42⋊C22 | φ: C2/C1 → C2 ⊆ Out C2×C4○D4 | 16 | 4 | (C2xC4oD4).7C2 | 64,102 |
(C2×C4○D4).8C2 = D4.7D4 | φ: C2/C1 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).8C2 | 64,133 |
(C2×C4○D4).9C2 = C23.33C23 | φ: C2/C1 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).9C2 | 64,201 |
(C2×C4○D4).10C2 = C23.38C23 | φ: C2/C1 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).10C2 | 64,217 |
(C2×C4○D4).11C2 = Q8○M4(2) | φ: C2/C1 → C2 ⊆ Out C2×C4○D4 | 16 | 4 | (C2xC4oD4).11C2 | 64,249 |
(C2×C4○D4).12C2 = C2×C8.C22 | φ: C2/C1 → C2 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4).12C2 | 64,255 |
(C2×C4○D4).13C2 = C4×C4○D4 | φ: trivial image | 32 | | (C2xC4oD4).13C2 | 64,198 |
(C2×C4○D4).14C2 = C2×C8○D4 | φ: trivial image | 32 | | (C2xC4oD4).14C2 | 64,248 |