Copied to
clipboard

G = Q8×C9order 72 = 23·32

Direct product of C9 and Q8

direct product, metacyclic, nilpotent (class 2), monomial, 2-elementary

Aliases: Q8×C9, C4.C18, C36.3C2, C12.4C6, C18.7C22, C3.(C3×Q8), C18(C3×Q8), C6.7(C2×C6), C2.2(C2×C18), (C3×Q8).2C3, SmallGroup(72,11)

Series: Derived Chief Lower central Upper central

C1C2 — Q8×C9
C1C3C6C18C36 — Q8×C9
C1C2 — Q8×C9
C1C18 — Q8×C9

Generators and relations for Q8×C9
 G = < a,b,c | a9=b4=1, c2=b2, ab=ba, ac=ca, cbc-1=b-1 >


Smallest permutation representation of Q8×C9
Regular action on 72 points
Generators in S72
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
(1 41 23 34)(2 42 24 35)(3 43 25 36)(4 44 26 28)(5 45 27 29)(6 37 19 30)(7 38 20 31)(8 39 21 32)(9 40 22 33)(10 48 66 55)(11 49 67 56)(12 50 68 57)(13 51 69 58)(14 52 70 59)(15 53 71 60)(16 54 72 61)(17 46 64 62)(18 47 65 63)
(1 59 23 52)(2 60 24 53)(3 61 25 54)(4 62 26 46)(5 63 27 47)(6 55 19 48)(7 56 20 49)(8 57 21 50)(9 58 22 51)(10 37 66 30)(11 38 67 31)(12 39 68 32)(13 40 69 33)(14 41 70 34)(15 42 71 35)(16 43 72 36)(17 44 64 28)(18 45 65 29)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,41,23,34)(2,42,24,35)(3,43,25,36)(4,44,26,28)(5,45,27,29)(6,37,19,30)(7,38,20,31)(8,39,21,32)(9,40,22,33)(10,48,66,55)(11,49,67,56)(12,50,68,57)(13,51,69,58)(14,52,70,59)(15,53,71,60)(16,54,72,61)(17,46,64,62)(18,47,65,63), (1,59,23,52)(2,60,24,53)(3,61,25,54)(4,62,26,46)(5,63,27,47)(6,55,19,48)(7,56,20,49)(8,57,21,50)(9,58,22,51)(10,37,66,30)(11,38,67,31)(12,39,68,32)(13,40,69,33)(14,41,70,34)(15,42,71,35)(16,43,72,36)(17,44,64,28)(18,45,65,29)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,41,23,34)(2,42,24,35)(3,43,25,36)(4,44,26,28)(5,45,27,29)(6,37,19,30)(7,38,20,31)(8,39,21,32)(9,40,22,33)(10,48,66,55)(11,49,67,56)(12,50,68,57)(13,51,69,58)(14,52,70,59)(15,53,71,60)(16,54,72,61)(17,46,64,62)(18,47,65,63), (1,59,23,52)(2,60,24,53)(3,61,25,54)(4,62,26,46)(5,63,27,47)(6,55,19,48)(7,56,20,49)(8,57,21,50)(9,58,22,51)(10,37,66,30)(11,38,67,31)(12,39,68,32)(13,40,69,33)(14,41,70,34)(15,42,71,35)(16,43,72,36)(17,44,64,28)(18,45,65,29) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)], [(1,41,23,34),(2,42,24,35),(3,43,25,36),(4,44,26,28),(5,45,27,29),(6,37,19,30),(7,38,20,31),(8,39,21,32),(9,40,22,33),(10,48,66,55),(11,49,67,56),(12,50,68,57),(13,51,69,58),(14,52,70,59),(15,53,71,60),(16,54,72,61),(17,46,64,62),(18,47,65,63)], [(1,59,23,52),(2,60,24,53),(3,61,25,54),(4,62,26,46),(5,63,27,47),(6,55,19,48),(7,56,20,49),(8,57,21,50),(9,58,22,51),(10,37,66,30),(11,38,67,31),(12,39,68,32),(13,40,69,33),(14,41,70,34),(15,42,71,35),(16,43,72,36),(17,44,64,28),(18,45,65,29)])

Q8×C9 is a maximal subgroup of   C9⋊Q16  Q82D9  Q83D9  Q8⋊C27  C18.A4  2+ 1+4⋊C9

45 conjugacy classes

class 1  2 3A3B4A4B4C6A6B9A···9F12A···12F18A···18F36A···36R
order1233444669···912···1218···1836···36
size1111222111···12···21···12···2

45 irreducible representations

dim111111222
type++-
imageC1C2C3C6C9C18Q8C3×Q8Q8×C9
kernelQ8×C9C36C3×Q8C12Q8C4C9C3C1
# reps1326618126

Matrix representation of Q8×C9 in GL2(𝔽19) generated by

90
09
,
168
133
,
09
20
G:=sub<GL(2,GF(19))| [9,0,0,9],[16,13,8,3],[0,2,9,0] >;

Q8×C9 in GAP, Magma, Sage, TeX

Q_8\times C_9
% in TeX

G:=Group("Q8xC9");
// GroupNames label

G:=SmallGroup(72,11);
// by ID

G=gap.SmallGroup(72,11);
# by ID

G:=PCGroup([5,-2,-2,-3,-2,-3,60,141,66,102]);
// Polycyclic

G:=Group<a,b,c|a^9=b^4=1,c^2=b^2,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of Q8×C9 in TeX

׿
×
𝔽