Extensions 1→N→G→Q→1 with N=C2×D4 and Q=C4

Direct product G=N×Q with N=C2×D4 and Q=C4
dρLabelID
C2×C4×D432C2xC4xD464,196

Semidirect products G=N:Q with N=C2×D4 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×D4)⋊1C4 = C22.SD16φ: C4/C1C4 ⊆ Out C2×D416(C2xD4):1C464,8
(C2×D4)⋊2C4 = C42⋊C4φ: C4/C1C4 ⊆ Out C2×D484+(C2xD4):2C464,34
(C2×D4)⋊3C4 = C23.23D4φ: C4/C2C2 ⊆ Out C2×D432(C2xD4):3C464,67
(C2×D4)⋊4C4 = C24.3C22φ: C4/C2C2 ⊆ Out C2×D432(C2xD4):4C464,71
(C2×D4)⋊5C4 = C2×C23⋊C4φ: C4/C2C2 ⊆ Out C2×D416(C2xD4):5C464,90
(C2×D4)⋊6C4 = C23.C23φ: C4/C2C2 ⊆ Out C2×D4164(C2xD4):6C464,91
(C2×D4)⋊7C4 = C2×D4⋊C4φ: C4/C2C2 ⊆ Out C2×D432(C2xD4):7C464,95
(C2×D4)⋊8C4 = C23.37D4φ: C4/C2C2 ⊆ Out C2×D416(C2xD4):8C464,99
(C2×D4)⋊9C4 = C2×C4≀C2φ: C4/C2C2 ⊆ Out C2×D416(C2xD4):9C464,101
(C2×D4)⋊10C4 = C42⋊C22φ: C4/C2C2 ⊆ Out C2×D4164(C2xD4):10C464,102
(C2×D4)⋊11C4 = C22.11C24φ: C4/C2C2 ⊆ Out C2×D416(C2xD4):11C464,199

Non-split extensions G=N.Q with N=C2×D4 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×D4).1C4 = C42.C22φ: C4/C1C4 ⊆ Out C2×D432(C2xD4).1C464,10
(C2×D4).2C4 = C4.D8φ: C4/C1C4 ⊆ Out C2×D432(C2xD4).2C464,12
(C2×D4).3C4 = C42.C4φ: C4/C1C4 ⊆ Out C2×D4164(C2xD4).3C464,36
(C2×D4).4C4 = D4⋊C8φ: C4/C2C2 ⊆ Out C2×D432(C2xD4).4C464,6
(C2×D4).5C4 = (C22×C8)⋊C2φ: C4/C2C2 ⊆ Out C2×D432(C2xD4).5C464,89
(C2×D4).6C4 = C2×C4.D4φ: C4/C2C2 ⊆ Out C2×D416(C2xD4).6C464,92
(C2×D4).7C4 = M4(2).8C22φ: C4/C2C2 ⊆ Out C2×D4164(C2xD4).7C464,94
(C2×D4).8C4 = C89D4φ: C4/C2C2 ⊆ Out C2×D432(C2xD4).8C464,116
(C2×D4).9C4 = C86D4φ: C4/C2C2 ⊆ Out C2×D432(C2xD4).9C464,117
(C2×D4).10C4 = Q8○M4(2)φ: C4/C2C2 ⊆ Out C2×D4164(C2xD4).10C464,249
(C2×D4).11C4 = C8×D4φ: trivial image32(C2xD4).11C464,115
(C2×D4).12C4 = C2×C8○D4φ: trivial image32(C2xD4).12C464,248

׿
×
𝔽