Copied to
clipboard

G = C4.D8order 64 = 26

1st non-split extension by C4 of D8 acting via D8/D4=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C4.9D8, C4.11SD16, C42.3C22, C4⋊C82C2, (C2×D4).2C4, C41D4.1C2, (C2×C4).108D4, C2.4(D4⋊C4), C2.4(C4.D4), C22.39(C22⋊C4), (C2×C4).12(C2×C4), SmallGroup(64,12)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C4.D8
C1C2C22C2×C4C42C41D4 — C4.D8
C1C22C2×C4 — C4.D8
C1C22C42 — C4.D8
C1C22C22C42 — C4.D8

Generators and relations for C4.D8
 G = < a,b,c | a4=b8=1, c2=a, bab-1=a-1, ac=ca, cbc-1=ab-1 >

8C2
8C2
2C4
4C22
4C22
4C22
4C22
4C22
4C22
2C23
2C23
4D4
4D4
4D4
4D4
4D4
4C8
4C8
4D4
2C2×C8
2C2×D4
2C2×D4
2C2×C8

Character table of C4.D8

 class 12A2B2C2D2E4A4B4C4D4E8A8B8C8D8E8F8G8H
 size 1111882222444444444
ρ11111111111111111111    trivial
ρ211111111111-1-1-1-1-1-1-1-1    linear of order 2
ρ31111-1-111111-111-1-111-1    linear of order 2
ρ41111-1-1111111-1-111-1-11    linear of order 2
ρ51111-11-1-1-1-11-i-iii-ii-ii    linear of order 4
ρ61111-11-1-1-1-11ii-i-ii-ii-i    linear of order 4
ρ711111-1-1-1-1-11i-ii-iii-i-i    linear of order 4
ρ811111-1-1-1-1-11-ii-ii-i-iii    linear of order 4
ρ92222002-2-22-200000000    orthogonal lifted from D4
ρ10222200-222-2-200000000    orthogonal lifted from D4
ρ112-2-2200-2002002200-2-20    orthogonal lifted from D8
ρ1222-2-20002-2002002-200-2    orthogonal lifted from D8
ρ132-2-2200-200200-2-200220    orthogonal lifted from D8
ρ1422-2-20002-200-200-22002    orthogonal lifted from D8
ρ1522-2-2000-2200--200-2-200--2    complex lifted from SD16
ρ162-2-2200200-200-2--200-2--20    complex lifted from SD16
ρ172-2-2200200-200--2-200--2-20    complex lifted from SD16
ρ1822-2-2000-2200-200--2--200-2    complex lifted from SD16
ρ194-44-4000000000000000    orthogonal lifted from C4.D4

Smallest permutation representation of C4.D8
On 32 points
Generators in S32
(1 24 29 9)(2 10 30 17)(3 18 31 11)(4 12 32 19)(5 20 25 13)(6 14 26 21)(7 22 27 15)(8 16 28 23)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 16 24 28 29 23 9 8)(2 7 10 22 30 27 17 15)(3 14 18 26 31 21 11 6)(4 5 12 20 32 25 19 13)

G:=sub<Sym(32)| (1,24,29,9)(2,10,30,17)(3,18,31,11)(4,12,32,19)(5,20,25,13)(6,14,26,21)(7,22,27,15)(8,16,28,23), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,16,24,28,29,23,9,8)(2,7,10,22,30,27,17,15)(3,14,18,26,31,21,11,6)(4,5,12,20,32,25,19,13)>;

G:=Group( (1,24,29,9)(2,10,30,17)(3,18,31,11)(4,12,32,19)(5,20,25,13)(6,14,26,21)(7,22,27,15)(8,16,28,23), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,16,24,28,29,23,9,8)(2,7,10,22,30,27,17,15)(3,14,18,26,31,21,11,6)(4,5,12,20,32,25,19,13) );

G=PermutationGroup([[(1,24,29,9),(2,10,30,17),(3,18,31,11),(4,12,32,19),(5,20,25,13),(6,14,26,21),(7,22,27,15),(8,16,28,23)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,16,24,28,29,23,9,8),(2,7,10,22,30,27,17,15),(3,14,18,26,31,21,11,6),(4,5,12,20,32,25,19,13)]])

C4.D8 is a maximal subgroup of
D4⋊D8  C42.181C23  Q8⋊D8  D42SD16  C42.191C23  Q82SD16  D4.D8  C42.201C23  Q8.D8  Q83SD16  C88D8  C814SD16  C87D8  C813SD16  D4.2SD16  Q8.2SD16  D4.2D8  Q8.2D8  C8⋊D8  C8⋊SD16  C82D8  C82SD16  C42.248C23  C42.249C23  C42.252C23  C42.253C23  Dic5.SD16
 C42.D2p: C42.D4  C42.409D4  C42.411D4  C42.413D4  C42.78D4  C42.80D4  C42.417D4  C42.82D4 ...
C4.D8 is a maximal quotient of
(C2×C4).98D8  C42.8Q8  Dic5.SD16
 C4p.D8: C8.24D8  C8.25D8  C8.29D8  C8.30D8  C4.D16  C8.27D8  C4.D24  C12.9D8 ...

Matrix representation of C4.D8 in GL4(𝔽17) generated by

161500
1100
0010
0001
,
7700
51000
0066
00140
,
7700
5000
0066
001411
G:=sub<GL(4,GF(17))| [16,1,0,0,15,1,0,0,0,0,1,0,0,0,0,1],[7,5,0,0,7,10,0,0,0,0,6,14,0,0,6,0],[7,5,0,0,7,0,0,0,0,0,6,14,0,0,6,11] >;

C4.D8 in GAP, Magma, Sage, TeX

C_4.D_8
% in TeX

G:=Group("C4.D8");
// GroupNames label

G:=SmallGroup(64,12);
// by ID

G=gap.SmallGroup(64,12);
# by ID

G:=PCGroup([6,-2,2,-2,2,-2,2,48,73,362,332,158,681,165]);
// Polycyclic

G:=Group<a,b,c|a^4=b^8=1,c^2=a,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=a*b^-1>;
// generators/relations

Export

Subgroup lattice of C4.D8 in TeX
Character table of C4.D8 in TeX

׿
×
𝔽