p-group, metabelian, nilpotent (class 3), monomial
Aliases: D4⋊C8, C4.16D8, C4.13SD16, C4.1M4(2), C42.62C22, C4⋊C8⋊1C2, (C4×C8)⋊1C2, C2.1C4≀C2, C4⋊C4.3C4, C4.1(C2×C8), (C2×D4).4C4, (C4×D4).1C2, (C2×C4).93D4, C2.5(C22⋊C8), C2.1(D4⋊C4), C22.21(C22⋊C4), (C2×C4).37(C2×C4), 2-Sylow(CSO-(4,5)), SmallGroup(64,6)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4⋊C8
G = < a,b,c | a4=b2=c8=1, bab=cac-1=a-1, cbc-1=ab >
Character table of D4⋊C8
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | i | -i | -i | -i | -i | i | i | i | i | i | -i | -i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | i | -i | -i | -i | -i | i | i | i | -i | -i | i | i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -i | i | i | i | i | -i | -i | -i | -i | -i | i | i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -i | i | i | i | i | -i | -i | -i | i | i | -i | -i | linear of order 4 |
ρ9 | 1 | -1 | 1 | -1 | -1 | 1 | i | -i | i | -i | -i | 1 | -1 | i | -i | i | ζ8 | ζ83 | ζ87 | ζ83 | ζ87 | ζ8 | ζ85 | ζ85 | ζ8 | ζ85 | ζ87 | ζ83 | linear of order 8 |
ρ10 | 1 | -1 | 1 | -1 | 1 | -1 | i | -i | i | -i | -i | 1 | -1 | i | i | -i | ζ8 | ζ83 | ζ87 | ζ83 | ζ87 | ζ8 | ζ85 | ζ85 | ζ85 | ζ8 | ζ83 | ζ87 | linear of order 8 |
ρ11 | 1 | -1 | 1 | -1 | -1 | 1 | -i | i | -i | i | i | 1 | -1 | -i | i | -i | ζ83 | ζ8 | ζ85 | ζ8 | ζ85 | ζ83 | ζ87 | ζ87 | ζ83 | ζ87 | ζ85 | ζ8 | linear of order 8 |
ρ12 | 1 | -1 | 1 | -1 | 1 | -1 | -i | i | -i | i | i | 1 | -1 | -i | -i | i | ζ83 | ζ8 | ζ85 | ζ8 | ζ85 | ζ83 | ζ87 | ζ87 | ζ87 | ζ83 | ζ8 | ζ85 | linear of order 8 |
ρ13 | 1 | -1 | 1 | -1 | -1 | 1 | -i | i | -i | i | i | 1 | -1 | -i | i | -i | ζ87 | ζ85 | ζ8 | ζ85 | ζ8 | ζ87 | ζ83 | ζ83 | ζ87 | ζ83 | ζ8 | ζ85 | linear of order 8 |
ρ14 | 1 | -1 | 1 | -1 | 1 | -1 | -i | i | -i | i | i | 1 | -1 | -i | -i | i | ζ87 | ζ85 | ζ8 | ζ85 | ζ8 | ζ87 | ζ83 | ζ83 | ζ83 | ζ87 | ζ85 | ζ8 | linear of order 8 |
ρ15 | 1 | -1 | 1 | -1 | -1 | 1 | i | -i | i | -i | -i | 1 | -1 | i | -i | i | ζ85 | ζ87 | ζ83 | ζ87 | ζ83 | ζ85 | ζ8 | ζ8 | ζ85 | ζ8 | ζ83 | ζ87 | linear of order 8 |
ρ16 | 1 | -1 | 1 | -1 | 1 | -1 | i | -i | i | -i | -i | 1 | -1 | i | i | -i | ζ85 | ζ87 | ζ83 | ζ87 | ζ83 | ζ85 | ζ8 | ζ8 | ζ8 | ζ85 | ζ87 | ζ83 | linear of order 8 |
ρ17 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | -√2 | √2 | √2 | -√2 | √2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ20 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | √2 | -√2 | -√2 | √2 | -√2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | -2i | 2i | -2i | 2i | -2i | -2 | 2 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | 2i | -2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | -1+i | -1-i | -1-i | 1+i | 1+i | 1-i | 1-i | -1+i | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ23 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | -2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 1+i | 1-i | 1-i | -1+i | -1+i | -1-i | -1-i | 1+i | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ24 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | 2i | -2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 1-i | 1+i | 1+i | -1-i | -1-i | -1+i | -1+i | 1-i | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ25 | 2 | -2 | 2 | -2 | 0 | 0 | 2i | -2i | 2i | -2i | 2i | -2 | 2 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from M4(2) |
ρ26 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | √-2 | -√-2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ27 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | -2i | 2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -1-i | -1+i | -1+i | 1-i | 1-i | 1+i | 1+i | -1-i | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ28 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | √-2 | -√-2 | √-2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
(1 21 31 14)(2 15 32 22)(3 23 25 16)(4 9 26 24)(5 17 27 10)(6 11 28 18)(7 19 29 12)(8 13 30 20)
(1 10)(2 28)(3 12)(4 30)(5 14)(6 32)(7 16)(8 26)(9 13)(11 15)(17 31)(18 22)(19 25)(20 24)(21 27)(23 29)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
G:=sub<Sym(32)| (1,21,31,14)(2,15,32,22)(3,23,25,16)(4,9,26,24)(5,17,27,10)(6,11,28,18)(7,19,29,12)(8,13,30,20), (1,10)(2,28)(3,12)(4,30)(5,14)(6,32)(7,16)(8,26)(9,13)(11,15)(17,31)(18,22)(19,25)(20,24)(21,27)(23,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)>;
G:=Group( (1,21,31,14)(2,15,32,22)(3,23,25,16)(4,9,26,24)(5,17,27,10)(6,11,28,18)(7,19,29,12)(8,13,30,20), (1,10)(2,28)(3,12)(4,30)(5,14)(6,32)(7,16)(8,26)(9,13)(11,15)(17,31)(18,22)(19,25)(20,24)(21,27)(23,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32) );
G=PermutationGroup([[(1,21,31,14),(2,15,32,22),(3,23,25,16),(4,9,26,24),(5,17,27,10),(6,11,28,18),(7,19,29,12),(8,13,30,20)], [(1,10),(2,28),(3,12),(4,30),(5,14),(6,32),(7,16),(8,26),(9,13),(11,15),(17,31),(18,22),(19,25),(20,24),(21,27),(23,29)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)]])
D4⋊C8 is a maximal subgroup of
C8×D8 C8×SD16 SD16⋊C8 C8⋊9D8 C8⋊12SD16 C8⋊15SD16 D4.M4(2) D4⋊2M4(2) Q8⋊2M4(2) C8⋊6D8 C8⋊9SD16 C8⋊M4(2) C8⋊3M4(2) D4⋊D8 Q8⋊D8 D4⋊SD16 C42.185C23 D4⋊3D8 Q8⋊3D8 C42.189C23 D4⋊2SD16 Q8⋊2SD16 D4⋊Q16 C42.195C23 D4.SD16 D4.3Q16 C42.199C23 D4.D8 Q8.D8 Q8⋊3SD16 D4.5SD16 D4⋊3Q16 C42.207C23 D4.7D8 D4⋊4Q16 C42.211C23 Q8⋊4SD16 C42.213C23 D4⋊4SD16 Dic5.23D8
D4p⋊C8: D8⋊5C8 C4.17D24 D12⋊2C8 D20⋊3C8 D20⋊4C8 D20⋊C8 C4.17D56 D28⋊2C8 ...
C42.D2p: C42.455D4 C42.397D4 C42.398D4 C42.45D4 C42.373D4 C42.47D4 C42.400D4 D4⋊M4(2) ...
D4⋊C8 is a maximal quotient of
(C2×C4).98D8 C4⋊C4⋊C8 C42.46Q8 C4.16D16 Q16⋊1C8 D8⋊C8 Q16⋊C8 D20⋊C8 Dic5.23D8
C4p.D8: D4⋊C16 C8.31D8 C8≀C2 C8.32D8 C4.17D24 D12⋊2C8 C12.57D8 D20⋊3C8 ...
Matrix representation of D4⋊C8 ►in GL3(𝔽17) generated by
1 | 0 | 0 |
0 | 0 | 1 |
0 | 16 | 0 |
1 | 0 | 0 |
0 | 0 | 1 |
0 | 1 | 0 |
8 | 0 | 0 |
0 | 3 | 14 |
0 | 14 | 14 |
G:=sub<GL(3,GF(17))| [1,0,0,0,0,16,0,1,0],[1,0,0,0,0,1,0,1,0],[8,0,0,0,3,14,0,14,14] >;
D4⋊C8 in GAP, Magma, Sage, TeX
D_4\rtimes C_8
% in TeX
G:=Group("D4:C8");
// GroupNames label
G:=SmallGroup(64,6);
// by ID
G=gap.SmallGroup(64,6);
# by ID
G:=PCGroup([6,-2,2,-2,2,-2,2,48,73,362,188,86,117]);
// Polycyclic
G:=Group<a,b,c|a^4=b^2=c^8=1,b*a*b=c*a*c^-1=a^-1,c*b*c^-1=a*b>;
// generators/relations
Export
Subgroup lattice of D4⋊C8 in TeX
Character table of D4⋊C8 in TeX