direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: C5×D9, C9⋊C10, C45⋊2C2, C15.2S3, C3.(C5×S3), SmallGroup(90,1)
Series: Derived ►Chief ►Lower central ►Upper central
C9 — C5×D9 |
Generators and relations for C5×D9
G = < a,b,c | a5=b9=c2=1, ab=ba, ac=ca, cbc=b-1 >
Character table of C5×D9
class | 1 | 2 | 3 | 5A | 5B | 5C | 5D | 9A | 9B | 9C | 10A | 10B | 10C | 10D | 15A | 15B | 15C | 15D | 45A | 45B | 45C | 45D | 45E | 45F | 45G | 45H | 45I | 45J | 45K | 45L | |
size | 1 | 9 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 9 | 9 | 9 | 9 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | ζ5 | ζ52 | ζ53 | ζ54 | 1 | 1 | 1 | -ζ53 | -ζ52 | -ζ54 | -ζ5 | ζ52 | ζ5 | ζ54 | ζ53 | ζ5 | ζ5 | ζ54 | ζ54 | ζ53 | ζ53 | ζ53 | ζ54 | ζ52 | ζ52 | ζ5 | ζ52 | linear of order 10 |
ρ4 | 1 | 1 | 1 | ζ53 | ζ5 | ζ54 | ζ52 | 1 | 1 | 1 | ζ54 | ζ5 | ζ52 | ζ53 | ζ5 | ζ53 | ζ52 | ζ54 | ζ53 | ζ53 | ζ52 | ζ52 | ζ54 | ζ54 | ζ54 | ζ52 | ζ5 | ζ5 | ζ53 | ζ5 | linear of order 5 |
ρ5 | 1 | -1 | 1 | ζ52 | ζ54 | ζ5 | ζ53 | 1 | 1 | 1 | -ζ5 | -ζ54 | -ζ53 | -ζ52 | ζ54 | ζ52 | ζ53 | ζ5 | ζ52 | ζ52 | ζ53 | ζ53 | ζ5 | ζ5 | ζ5 | ζ53 | ζ54 | ζ54 | ζ52 | ζ54 | linear of order 10 |
ρ6 | 1 | 1 | 1 | ζ54 | ζ53 | ζ52 | ζ5 | 1 | 1 | 1 | ζ52 | ζ53 | ζ5 | ζ54 | ζ53 | ζ54 | ζ5 | ζ52 | ζ54 | ζ54 | ζ5 | ζ5 | ζ52 | ζ52 | ζ52 | ζ5 | ζ53 | ζ53 | ζ54 | ζ53 | linear of order 5 |
ρ7 | 1 | -1 | 1 | ζ53 | ζ5 | ζ54 | ζ52 | 1 | 1 | 1 | -ζ54 | -ζ5 | -ζ52 | -ζ53 | ζ5 | ζ53 | ζ52 | ζ54 | ζ53 | ζ53 | ζ52 | ζ52 | ζ54 | ζ54 | ζ54 | ζ52 | ζ5 | ζ5 | ζ53 | ζ5 | linear of order 10 |
ρ8 | 1 | 1 | 1 | ζ5 | ζ52 | ζ53 | ζ54 | 1 | 1 | 1 | ζ53 | ζ52 | ζ54 | ζ5 | ζ52 | ζ5 | ζ54 | ζ53 | ζ5 | ζ5 | ζ54 | ζ54 | ζ53 | ζ53 | ζ53 | ζ54 | ζ52 | ζ52 | ζ5 | ζ52 | linear of order 5 |
ρ9 | 1 | -1 | 1 | ζ54 | ζ53 | ζ52 | ζ5 | 1 | 1 | 1 | -ζ52 | -ζ53 | -ζ5 | -ζ54 | ζ53 | ζ54 | ζ5 | ζ52 | ζ54 | ζ54 | ζ5 | ζ5 | ζ52 | ζ52 | ζ52 | ζ5 | ζ53 | ζ53 | ζ54 | ζ53 | linear of order 10 |
ρ10 | 1 | 1 | 1 | ζ52 | ζ54 | ζ5 | ζ53 | 1 | 1 | 1 | ζ5 | ζ54 | ζ53 | ζ52 | ζ54 | ζ52 | ζ53 | ζ5 | ζ52 | ζ52 | ζ53 | ζ53 | ζ5 | ζ5 | ζ5 | ζ53 | ζ54 | ζ54 | ζ52 | ζ54 | linear of order 5 |
ρ11 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ12 | 2 | 0 | -1 | 2 | 2 | 2 | 2 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ13 | 2 | 0 | -1 | 2 | 2 | 2 | 2 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ14 | 2 | 0 | -1 | 2 | 2 | 2 | 2 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ15 | 2 | 0 | 2 | 2ζ53 | 2ζ5 | 2ζ54 | 2ζ52 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 2ζ5 | 2ζ53 | 2ζ52 | 2ζ54 | -ζ53 | -ζ53 | -ζ52 | -ζ52 | -ζ54 | -ζ54 | -ζ54 | -ζ52 | -ζ5 | -ζ5 | -ζ53 | -ζ5 | complex lifted from C5×S3 |
ρ16 | 2 | 0 | 2 | 2ζ52 | 2ζ54 | 2ζ5 | 2ζ53 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 2ζ54 | 2ζ52 | 2ζ53 | 2ζ5 | -ζ52 | -ζ52 | -ζ53 | -ζ53 | -ζ5 | -ζ5 | -ζ5 | -ζ53 | -ζ54 | -ζ54 | -ζ52 | -ζ54 | complex lifted from C5×S3 |
ρ17 | 2 | 0 | 2 | 2ζ5 | 2ζ52 | 2ζ53 | 2ζ54 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 2ζ52 | 2ζ5 | 2ζ54 | 2ζ53 | -ζ5 | -ζ5 | -ζ54 | -ζ54 | -ζ53 | -ζ53 | -ζ53 | -ζ54 | -ζ52 | -ζ52 | -ζ5 | -ζ52 | complex lifted from C5×S3 |
ρ18 | 2 | 0 | 2 | 2ζ54 | 2ζ53 | 2ζ52 | 2ζ5 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 2ζ53 | 2ζ54 | 2ζ5 | 2ζ52 | -ζ54 | -ζ54 | -ζ5 | -ζ5 | -ζ52 | -ζ52 | -ζ52 | -ζ5 | -ζ53 | -ζ53 | -ζ54 | -ζ53 | complex lifted from C5×S3 |
ρ19 | 2 | 0 | -1 | 2ζ53 | 2ζ5 | 2ζ54 | 2ζ52 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | 0 | 0 | 0 | 0 | -ζ5 | -ζ53 | -ζ52 | -ζ54 | ζ95ζ53+ζ94ζ53 | ζ98ζ53+ζ9ζ53 | ζ97ζ52+ζ92ζ52 | ζ95ζ52+ζ94ζ52 | ζ97ζ54+ζ92ζ54 | ζ95ζ54+ζ94ζ54 | ζ98ζ54+ζ9ζ54 | ζ98ζ52+ζ9ζ52 | ζ95ζ5+ζ94ζ5 | ζ98ζ5+ζ9ζ5 | ζ97ζ53+ζ92ζ53 | ζ97ζ5+ζ92ζ5 | complex faithful |
ρ20 | 2 | 0 | -1 | 2ζ53 | 2ζ5 | 2ζ54 | 2ζ52 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | 0 | 0 | 0 | 0 | -ζ5 | -ζ53 | -ζ52 | -ζ54 | ζ97ζ53+ζ92ζ53 | ζ95ζ53+ζ94ζ53 | ζ98ζ52+ζ9ζ52 | ζ97ζ52+ζ92ζ52 | ζ98ζ54+ζ9ζ54 | ζ97ζ54+ζ92ζ54 | ζ95ζ54+ζ94ζ54 | ζ95ζ52+ζ94ζ52 | ζ97ζ5+ζ92ζ5 | ζ95ζ5+ζ94ζ5 | ζ98ζ53+ζ9ζ53 | ζ98ζ5+ζ9ζ5 | complex faithful |
ρ21 | 2 | 0 | -1 | 2ζ54 | 2ζ53 | 2ζ52 | 2ζ5 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | 0 | 0 | 0 | 0 | -ζ53 | -ζ54 | -ζ5 | -ζ52 | ζ97ζ54+ζ92ζ54 | ζ95ζ54+ζ94ζ54 | ζ98ζ5+ζ9ζ5 | ζ97ζ5+ζ92ζ5 | ζ98ζ52+ζ9ζ52 | ζ97ζ52+ζ92ζ52 | ζ95ζ52+ζ94ζ52 | ζ95ζ5+ζ94ζ5 | ζ97ζ53+ζ92ζ53 | ζ95ζ53+ζ94ζ53 | ζ98ζ54+ζ9ζ54 | ζ98ζ53+ζ9ζ53 | complex faithful |
ρ22 | 2 | 0 | -1 | 2ζ52 | 2ζ54 | 2ζ5 | 2ζ53 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | 0 | 0 | 0 | 0 | -ζ54 | -ζ52 | -ζ53 | -ζ5 | ζ95ζ52+ζ94ζ52 | ζ98ζ52+ζ9ζ52 | ζ97ζ53+ζ92ζ53 | ζ95ζ53+ζ94ζ53 | ζ97ζ5+ζ92ζ5 | ζ95ζ5+ζ94ζ5 | ζ98ζ5+ζ9ζ5 | ζ98ζ53+ζ9ζ53 | ζ95ζ54+ζ94ζ54 | ζ98ζ54+ζ9ζ54 | ζ97ζ52+ζ92ζ52 | ζ97ζ54+ζ92ζ54 | complex faithful |
ρ23 | 2 | 0 | -1 | 2ζ5 | 2ζ52 | 2ζ53 | 2ζ54 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | 0 | 0 | 0 | 0 | -ζ52 | -ζ5 | -ζ54 | -ζ53 | ζ97ζ5+ζ92ζ5 | ζ95ζ5+ζ94ζ5 | ζ98ζ54+ζ9ζ54 | ζ97ζ54+ζ92ζ54 | ζ98ζ53+ζ9ζ53 | ζ97ζ53+ζ92ζ53 | ζ95ζ53+ζ94ζ53 | ζ95ζ54+ζ94ζ54 | ζ97ζ52+ζ92ζ52 | ζ95ζ52+ζ94ζ52 | ζ98ζ5+ζ9ζ5 | ζ98ζ52+ζ9ζ52 | complex faithful |
ρ24 | 2 | 0 | -1 | 2ζ5 | 2ζ52 | 2ζ53 | 2ζ54 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | 0 | 0 | 0 | 0 | -ζ52 | -ζ5 | -ζ54 | -ζ53 | ζ95ζ5+ζ94ζ5 | ζ98ζ5+ζ9ζ5 | ζ97ζ54+ζ92ζ54 | ζ95ζ54+ζ94ζ54 | ζ97ζ53+ζ92ζ53 | ζ95ζ53+ζ94ζ53 | ζ98ζ53+ζ9ζ53 | ζ98ζ54+ζ9ζ54 | ζ95ζ52+ζ94ζ52 | ζ98ζ52+ζ9ζ52 | ζ97ζ5+ζ92ζ5 | ζ97ζ52+ζ92ζ52 | complex faithful |
ρ25 | 2 | 0 | -1 | 2ζ54 | 2ζ53 | 2ζ52 | 2ζ5 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | 0 | 0 | 0 | 0 | -ζ53 | -ζ54 | -ζ5 | -ζ52 | ζ95ζ54+ζ94ζ54 | ζ98ζ54+ζ9ζ54 | ζ97ζ5+ζ92ζ5 | ζ95ζ5+ζ94ζ5 | ζ97ζ52+ζ92ζ52 | ζ95ζ52+ζ94ζ52 | ζ98ζ52+ζ9ζ52 | ζ98ζ5+ζ9ζ5 | ζ95ζ53+ζ94ζ53 | ζ98ζ53+ζ9ζ53 | ζ97ζ54+ζ92ζ54 | ζ97ζ53+ζ92ζ53 | complex faithful |
ρ26 | 2 | 0 | -1 | 2ζ53 | 2ζ5 | 2ζ54 | 2ζ52 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | 0 | 0 | 0 | 0 | -ζ5 | -ζ53 | -ζ52 | -ζ54 | ζ98ζ53+ζ9ζ53 | ζ97ζ53+ζ92ζ53 | ζ95ζ52+ζ94ζ52 | ζ98ζ52+ζ9ζ52 | ζ95ζ54+ζ94ζ54 | ζ98ζ54+ζ9ζ54 | ζ97ζ54+ζ92ζ54 | ζ97ζ52+ζ92ζ52 | ζ98ζ5+ζ9ζ5 | ζ97ζ5+ζ92ζ5 | ζ95ζ53+ζ94ζ53 | ζ95ζ5+ζ94ζ5 | complex faithful |
ρ27 | 2 | 0 | -1 | 2ζ5 | 2ζ52 | 2ζ53 | 2ζ54 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | 0 | 0 | 0 | 0 | -ζ52 | -ζ5 | -ζ54 | -ζ53 | ζ98ζ5+ζ9ζ5 | ζ97ζ5+ζ92ζ5 | ζ95ζ54+ζ94ζ54 | ζ98ζ54+ζ9ζ54 | ζ95ζ53+ζ94ζ53 | ζ98ζ53+ζ9ζ53 | ζ97ζ53+ζ92ζ53 | ζ97ζ54+ζ92ζ54 | ζ98ζ52+ζ9ζ52 | ζ97ζ52+ζ92ζ52 | ζ95ζ5+ζ94ζ5 | ζ95ζ52+ζ94ζ52 | complex faithful |
ρ28 | 2 | 0 | -1 | 2ζ54 | 2ζ53 | 2ζ52 | 2ζ5 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | 0 | 0 | 0 | 0 | -ζ53 | -ζ54 | -ζ5 | -ζ52 | ζ98ζ54+ζ9ζ54 | ζ97ζ54+ζ92ζ54 | ζ95ζ5+ζ94ζ5 | ζ98ζ5+ζ9ζ5 | ζ95ζ52+ζ94ζ52 | ζ98ζ52+ζ9ζ52 | ζ97ζ52+ζ92ζ52 | ζ97ζ5+ζ92ζ5 | ζ98ζ53+ζ9ζ53 | ζ97ζ53+ζ92ζ53 | ζ95ζ54+ζ94ζ54 | ζ95ζ53+ζ94ζ53 | complex faithful |
ρ29 | 2 | 0 | -1 | 2ζ52 | 2ζ54 | 2ζ5 | 2ζ53 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | 0 | 0 | 0 | 0 | -ζ54 | -ζ52 | -ζ53 | -ζ5 | ζ97ζ52+ζ92ζ52 | ζ95ζ52+ζ94ζ52 | ζ98ζ53+ζ9ζ53 | ζ97ζ53+ζ92ζ53 | ζ98ζ5+ζ9ζ5 | ζ97ζ5+ζ92ζ5 | ζ95ζ5+ζ94ζ5 | ζ95ζ53+ζ94ζ53 | ζ97ζ54+ζ92ζ54 | ζ95ζ54+ζ94ζ54 | ζ98ζ52+ζ9ζ52 | ζ98ζ54+ζ9ζ54 | complex faithful |
ρ30 | 2 | 0 | -1 | 2ζ52 | 2ζ54 | 2ζ5 | 2ζ53 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | 0 | 0 | 0 | 0 | -ζ54 | -ζ52 | -ζ53 | -ζ5 | ζ98ζ52+ζ9ζ52 | ζ97ζ52+ζ92ζ52 | ζ95ζ53+ζ94ζ53 | ζ98ζ53+ζ9ζ53 | ζ95ζ5+ζ94ζ5 | ζ98ζ5+ζ9ζ5 | ζ97ζ5+ζ92ζ5 | ζ97ζ53+ζ92ζ53 | ζ98ζ54+ζ9ζ54 | ζ97ζ54+ζ92ζ54 | ζ95ζ52+ζ94ζ52 | ζ95ζ54+ζ94ζ54 | complex faithful |
(1 38 29 20 11)(2 39 30 21 12)(3 40 31 22 13)(4 41 32 23 14)(5 42 33 24 15)(6 43 34 25 16)(7 44 35 26 17)(8 45 36 27 18)(9 37 28 19 10)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)
(1 9)(2 8)(3 7)(4 6)(10 11)(12 18)(13 17)(14 16)(19 20)(21 27)(22 26)(23 25)(28 29)(30 36)(31 35)(32 34)(37 38)(39 45)(40 44)(41 43)
G:=sub<Sym(45)| (1,38,29,20,11)(2,39,30,21,12)(3,40,31,22,13)(4,41,32,23,14)(5,42,33,24,15)(6,43,34,25,16)(7,44,35,26,17)(8,45,36,27,18)(9,37,28,19,10), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45), (1,9)(2,8)(3,7)(4,6)(10,11)(12,18)(13,17)(14,16)(19,20)(21,27)(22,26)(23,25)(28,29)(30,36)(31,35)(32,34)(37,38)(39,45)(40,44)(41,43)>;
G:=Group( (1,38,29,20,11)(2,39,30,21,12)(3,40,31,22,13)(4,41,32,23,14)(5,42,33,24,15)(6,43,34,25,16)(7,44,35,26,17)(8,45,36,27,18)(9,37,28,19,10), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45), (1,9)(2,8)(3,7)(4,6)(10,11)(12,18)(13,17)(14,16)(19,20)(21,27)(22,26)(23,25)(28,29)(30,36)(31,35)(32,34)(37,38)(39,45)(40,44)(41,43) );
G=PermutationGroup([[(1,38,29,20,11),(2,39,30,21,12),(3,40,31,22,13),(4,41,32,23,14),(5,42,33,24,15),(6,43,34,25,16),(7,44,35,26,17),(8,45,36,27,18),(9,37,28,19,10)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45)], [(1,9),(2,8),(3,7),(4,6),(10,11),(12,18),(13,17),(14,16),(19,20),(21,27),(22,26),(23,25),(28,29),(30,36),(31,35),(32,34),(37,38),(39,45),(40,44),(41,43)]])
Matrix representation of C5×D9 ►in GL2(𝔽181) generated by
125 | 0 |
0 | 125 |
177 | 131 |
50 | 127 |
50 | 127 |
177 | 131 |
G:=sub<GL(2,GF(181))| [125,0,0,125],[177,50,131,127],[50,177,127,131] >;
C5×D9 in GAP, Magma, Sage, TeX
C_5\times D_9
% in TeX
G:=Group("C5xD9");
// GroupNames label
G:=SmallGroup(90,1);
// by ID
G=gap.SmallGroup(90,1);
# by ID
G:=PCGroup([4,-2,-5,-3,-3,602,82,963]);
// Polycyclic
G:=Group<a,b,c|a^5=b^9=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export
Subgroup lattice of C5×D9 in TeX
Character table of C5×D9 in TeX