# Extensions 1→N→G→Q→1 with N=C6 and Q=C2×Q8

Direct product G=N×Q with N=C6 and Q=C2×Q8
dρLabelID
Q8×C2×C696Q8xC2xC696,222

Semidirect products G=N:Q with N=C6 and Q=C2×Q8
extensionφ:Q→Aut NdρLabelID
C61(C2×Q8) = C22×Dic6φ: C2×Q8/C2×C4C2 ⊆ Aut C696C6:1(C2xQ8)96,205
C62(C2×Q8) = C2×S3×Q8φ: C2×Q8/Q8C2 ⊆ Aut C648C6:2(C2xQ8)96,212

Non-split extensions G=N.Q with N=C6 and Q=C2×Q8
extensionφ:Q→Aut NdρLabelID
C6.1(C2×Q8) = C4×Dic6φ: C2×Q8/C2×C4C2 ⊆ Aut C696C6.1(C2xQ8)96,75
C6.2(C2×Q8) = C122Q8φ: C2×Q8/C2×C4C2 ⊆ Aut C696C6.2(C2xQ8)96,76
C6.3(C2×Q8) = C12.6Q8φ: C2×Q8/C2×C4C2 ⊆ Aut C696C6.3(C2xQ8)96,77
C6.4(C2×Q8) = Dic3.D4φ: C2×Q8/C2×C4C2 ⊆ Aut C648C6.4(C2xQ8)96,85
C6.5(C2×Q8) = C12⋊Q8φ: C2×Q8/C2×C4C2 ⊆ Aut C696C6.5(C2xQ8)96,95
C6.6(C2×Q8) = C4.Dic6φ: C2×Q8/C2×C4C2 ⊆ Aut C696C6.6(C2xQ8)96,97
C6.7(C2×Q8) = C2×Dic3⋊C4φ: C2×Q8/C2×C4C2 ⊆ Aut C696C6.7(C2xQ8)96,130
C6.8(C2×Q8) = C12.48D4φ: C2×Q8/C2×C4C2 ⊆ Aut C648C6.8(C2xQ8)96,131
C6.9(C2×Q8) = C2×C4⋊Dic3φ: C2×Q8/C2×C4C2 ⊆ Aut C696C6.9(C2xQ8)96,132
C6.10(C2×Q8) = Dic6⋊C4φ: C2×Q8/Q8C2 ⊆ Aut C696C6.10(C2xQ8)96,94
C6.11(C2×Q8) = Dic3.Q8φ: C2×Q8/Q8C2 ⊆ Aut C696C6.11(C2xQ8)96,96
C6.12(C2×Q8) = S3×C4⋊C4φ: C2×Q8/Q8C2 ⊆ Aut C648C6.12(C2xQ8)96,98
C6.13(C2×Q8) = D6⋊Q8φ: C2×Q8/Q8C2 ⊆ Aut C648C6.13(C2xQ8)96,103
C6.14(C2×Q8) = C4.D12φ: C2×Q8/Q8C2 ⊆ Aut C648C6.14(C2xQ8)96,104
C6.15(C2×Q8) = Dic3⋊Q8φ: C2×Q8/Q8C2 ⊆ Aut C696C6.15(C2xQ8)96,151
C6.16(C2×Q8) = Q8×Dic3φ: C2×Q8/Q8C2 ⊆ Aut C696C6.16(C2xQ8)96,152
C6.17(C2×Q8) = D63Q8φ: C2×Q8/Q8C2 ⊆ Aut C648C6.17(C2xQ8)96,153
C6.18(C2×Q8) = C6×C4⋊C4central extension (φ=1)96C6.18(C2xQ8)96,163
C6.19(C2×Q8) = Q8×C12central extension (φ=1)96C6.19(C2xQ8)96,166
C6.20(C2×Q8) = C3×C22⋊Q8central extension (φ=1)48C6.20(C2xQ8)96,169
C6.21(C2×Q8) = C3×C42.C2central extension (φ=1)96C6.21(C2xQ8)96,172
C6.22(C2×Q8) = C3×C4⋊Q8central extension (φ=1)96C6.22(C2xQ8)96,175

׿
×
𝔽