direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: S3×C4⋊C4, D6.Q8, D6.11D4, C4⋊3(C4×S3), (C4×S3)⋊1C4, C12⋊1(C2×C4), C2.3(S3×D4), C2.2(S3×Q8), D6.8(C2×C4), C6.23(C2×D4), (C2×C4).30D6, C6.12(C2×Q8), C4⋊Dic3⋊11C2, Dic3⋊3(C2×C4), C6.9(C22×C4), Dic3⋊C4⋊11C2, (C2×C6).32C23, (C2×C12).23C22, C22.16(C22×S3), (C22×S3).34C22, (C2×Dic3).29C22, C3⋊1(C2×C4⋊C4), (C3×C4⋊C4)⋊2C2, (S3×C2×C4).1C2, C2.11(S3×C2×C4), SmallGroup(96,98)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for S3×C4⋊C4
G = < a,b,c,d | a3=b2=c4=d4=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >
Subgroups: 186 in 92 conjugacy classes, 49 normal (19 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2×C4, C2×C4, C2×C4, C23, Dic3, Dic3, C12, C12, D6, C2×C6, C4⋊C4, C4⋊C4, C22×C4, C4×S3, C4×S3, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C22×S3, C2×C4⋊C4, Dic3⋊C4, C4⋊Dic3, C3×C4⋊C4, S3×C2×C4, S3×C2×C4, S3×C4⋊C4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Q8, C23, D6, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4×S3, C22×S3, C2×C4⋊C4, S3×C2×C4, S3×D4, S3×Q8, S3×C4⋊C4
Character table of S3×C4⋊C4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 6A | 6B | 6C | 12A | 12B | 12C | 12D | 12E | 12F | |
size | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -i | i | i | -i | 1 | -i | -i | 1 | -1 | i | i | -1 | -1 | 1 | -i | i | i | 1 | -i | -1 | linear of order 4 |
ρ10 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -i | i | -i | i | -1 | i | -i | 1 | -1 | -i | i | -1 | -1 | 1 | i | -i | i | -1 | -i | 1 | linear of order 4 |
ρ11 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -i | i | i | -i | 1 | i | i | -1 | 1 | -i | -i | -1 | -1 | 1 | -i | i | i | 1 | -i | -1 | linear of order 4 |
ρ12 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -i | i | -i | i | -1 | -i | i | -1 | 1 | i | -i | -1 | -1 | 1 | i | -i | i | -1 | -i | 1 | linear of order 4 |
ρ13 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | i | -i | -i | i | 1 | i | i | 1 | -1 | -i | -i | -1 | -1 | 1 | i | -i | -i | 1 | i | -1 | linear of order 4 |
ρ14 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | i | -i | i | -i | -1 | -i | i | 1 | -1 | i | -i | -1 | -1 | 1 | -i | i | -i | -1 | i | 1 | linear of order 4 |
ρ15 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | i | -i | -i | i | 1 | -i | -i | -1 | 1 | i | i | -1 | -1 | 1 | i | -i | -i | 1 | i | -1 | linear of order 4 |
ρ16 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | i | -i | i | -i | -1 | i | -i | -1 | 1 | -i | i | -1 | -1 | 1 | -i | i | -i | -1 | i | 1 | linear of order 4 |
ρ17 | 2 | -2 | 2 | -2 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ19 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ20 | 2 | -2 | 2 | -2 | -2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | orthogonal lifted from D6 |
ρ22 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ23 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ24 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ25 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | 2i | -2i | 2i | -2i | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | i | -i | i | 1 | -i | -1 | complex lifted from C4×S3 |
ρ26 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | -2i | 2i | -2i | 2i | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -i | i | -i | 1 | i | -1 | complex lifted from C4×S3 |
ρ27 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -2 | -2i | 2i | 2i | -2i | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | i | -i | -i | -1 | i | 1 | complex lifted from C4×S3 |
ρ28 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -2 | 2i | -2i | -2i | 2i | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -i | i | i | -1 | -i | 1 | complex lifted from C4×S3 |
ρ29 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ30 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from S3×Q8, Schur index 2 |
(1 16 17)(2 13 18)(3 14 19)(4 15 20)(5 29 34)(6 30 35)(7 31 36)(8 32 33)(9 25 42)(10 26 43)(11 27 44)(12 28 41)(21 37 46)(22 38 47)(23 39 48)(24 40 45)
(1 3)(2 4)(5 7)(6 8)(9 27)(10 28)(11 25)(12 26)(13 20)(14 17)(15 18)(16 19)(21 39)(22 40)(23 37)(24 38)(29 36)(30 33)(31 34)(32 35)(41 43)(42 44)(45 47)(46 48)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 47 43 8)(2 46 44 7)(3 45 41 6)(4 48 42 5)(9 29 15 23)(10 32 16 22)(11 31 13 21)(12 30 14 24)(17 38 26 33)(18 37 27 36)(19 40 28 35)(20 39 25 34)
G:=sub<Sym(48)| (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,29,34)(6,30,35)(7,31,36)(8,32,33)(9,25,42)(10,26,43)(11,27,44)(12,28,41)(21,37,46)(22,38,47)(23,39,48)(24,40,45), (1,3)(2,4)(5,7)(6,8)(9,27)(10,28)(11,25)(12,26)(13,20)(14,17)(15,18)(16,19)(21,39)(22,40)(23,37)(24,38)(29,36)(30,33)(31,34)(32,35)(41,43)(42,44)(45,47)(46,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,47,43,8)(2,46,44,7)(3,45,41,6)(4,48,42,5)(9,29,15,23)(10,32,16,22)(11,31,13,21)(12,30,14,24)(17,38,26,33)(18,37,27,36)(19,40,28,35)(20,39,25,34)>;
G:=Group( (1,16,17)(2,13,18)(3,14,19)(4,15,20)(5,29,34)(6,30,35)(7,31,36)(8,32,33)(9,25,42)(10,26,43)(11,27,44)(12,28,41)(21,37,46)(22,38,47)(23,39,48)(24,40,45), (1,3)(2,4)(5,7)(6,8)(9,27)(10,28)(11,25)(12,26)(13,20)(14,17)(15,18)(16,19)(21,39)(22,40)(23,37)(24,38)(29,36)(30,33)(31,34)(32,35)(41,43)(42,44)(45,47)(46,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,47,43,8)(2,46,44,7)(3,45,41,6)(4,48,42,5)(9,29,15,23)(10,32,16,22)(11,31,13,21)(12,30,14,24)(17,38,26,33)(18,37,27,36)(19,40,28,35)(20,39,25,34) );
G=PermutationGroup([[(1,16,17),(2,13,18),(3,14,19),(4,15,20),(5,29,34),(6,30,35),(7,31,36),(8,32,33),(9,25,42),(10,26,43),(11,27,44),(12,28,41),(21,37,46),(22,38,47),(23,39,48),(24,40,45)], [(1,3),(2,4),(5,7),(6,8),(9,27),(10,28),(11,25),(12,26),(13,20),(14,17),(15,18),(16,19),(21,39),(22,40),(23,37),(24,38),(29,36),(30,33),(31,34),(32,35),(41,43),(42,44),(45,47),(46,48)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,47,43,8),(2,46,44,7),(3,45,41,6),(4,48,42,5),(9,29,15,23),(10,32,16,22),(11,31,13,21),(12,30,14,24),(17,38,26,33),(18,37,27,36),(19,40,28,35),(20,39,25,34)]])
S3×C4⋊C4 is a maximal subgroup of
D4⋊(C4×S3) D6.D8 D6.SD16 Q8⋊7(C4×S3) D6.1SD16 D6.Q16 C8⋊(C4×S3) D6.2SD16 D6.4SD16 C8⋊S3⋊C4 D6.5D8 D6.2Q16 C6.82+ 1+4 C6.2- 1+4 C6.102+ 1+4 C42.91D6 C42.94D6 C42.95D6 C4×S3×D4 C42.108D6 D12⋊24D4 C42.113D6 C4×S3×Q8 C42.126D6 D12⋊10Q8 C42.132D6 C6.722- 1+4 C6.732- 1+4 C6.432+ 1+4 C6.172- 1+4 D12⋊22D4 C6.1182+ 1+4 C6.522+ 1+4 C6.202- 1+4 C6.212- 1+4 C6.822- 1+4 C6.632+ 1+4 C6.642+ 1+4 C42.148D6 D12⋊7Q8 C42.150D6 C42.151D6 C42.152D6 C42.153D6 C42.161D6 C42.162D6 C42.163D6 D12⋊12D4 C42.174D6 D12⋊9Q8 C62.53C23 C62.70C23 D30.Q8 D30.2Q8
S3×C4⋊C4 is a maximal quotient of
C6.(C4×Q8) Dic3⋊C42 C3⋊(C42⋊8C4) D6⋊(C4⋊C4) D6⋊C4⋊C4 C12⋊M4(2) C42.30D6 (S3×C8)⋊C4 C8⋊(C4×S3) C8.27(C4×S3) C8⋊S3⋊C4 M4(2).25D6 (C4×Dic3)⋊8C4 Dic3⋊(C4⋊C4) C4⋊(D6⋊C4) D6⋊C4⋊6C4 C62.53C23 C62.70C23 D30.Q8 D30.2Q8
Matrix representation of S3×C4⋊C4 ►in GL4(𝔽13) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 12 |
0 | 0 | 1 | 12 |
12 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
9 | 3 | 0 | 0 |
3 | 4 | 0 | 0 |
0 | 0 | 12 | 0 |
0 | 0 | 0 | 12 |
0 | 1 | 0 | 0 |
12 | 0 | 0 | 0 |
0 | 0 | 8 | 0 |
0 | 0 | 0 | 8 |
G:=sub<GL(4,GF(13))| [1,0,0,0,0,1,0,0,0,0,0,1,0,0,12,12],[12,0,0,0,0,12,0,0,0,0,0,1,0,0,1,0],[9,3,0,0,3,4,0,0,0,0,12,0,0,0,0,12],[0,12,0,0,1,0,0,0,0,0,8,0,0,0,0,8] >;
S3×C4⋊C4 in GAP, Magma, Sage, TeX
S_3\times C_4\rtimes C_4
% in TeX
G:=Group("S3xC4:C4");
// GroupNames label
G:=SmallGroup(96,98);
// by ID
G=gap.SmallGroup(96,98);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,103,188,50,2309]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^2=c^4=d^4=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations
Export