metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D6⋊2Q8, C12.11D4, C4.13D12, C4⋊C4⋊5S3, C6.8(C2×D4), C2.7(S3×Q8), D6⋊C4.3C2, C4⋊Dic3⋊6C2, (C2×C4).14D6, C3⋊3(C22⋊Q8), C6.14(C2×Q8), (C2×Dic6)⋊7C2, C2.10(C2×D12), C6.27(C4○D4), (C2×C6).38C23, (C2×C12).6C22, C2.13(D4⋊2S3), C22.52(C22×S3), (C22×S3).22C22, (C2×Dic3).13C22, (C3×C4⋊C4)⋊8C2, (S3×C2×C4).3C2, SmallGroup(96,104)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C4.D12
G = < a,b,c | a4=b12=1, c2=a2, bab-1=cac-1=a-1, cbc-1=a2b-1 >
Subgroups: 170 in 74 conjugacy classes, 35 normal (19 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2×C4, C2×C4, C2×C4, Q8, C23, Dic3, C12, C12, D6, D6, C2×C6, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×Q8, Dic6, C4×S3, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C22×S3, C22⋊Q8, C4⋊Dic3, D6⋊C4, C3×C4⋊C4, C2×Dic6, S3×C2×C4, C4.D12
Quotients: C1, C2, C22, S3, D4, Q8, C23, D6, C2×D4, C2×Q8, C4○D4, D12, C22×S3, C22⋊Q8, C2×D12, D4⋊2S3, S3×Q8, C4.D12
Character table of C4.D12
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | 6B | 6C | 12A | 12B | 12C | 12D | 12E | 12F | |
size | 1 | 1 | 1 | 1 | 6 | 6 | 2 | 2 | 2 | 4 | 4 | 6 | 6 | 12 | 12 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ14 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | √3 | √3 | 1 | -√3 | -√3 | orthogonal lifted from D12 |
ρ15 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | 1 | √3 | -√3 | -1 | √3 | -√3 | orthogonal lifted from D12 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | 1 | -√3 | √3 | -1 | -√3 | √3 | orthogonal lifted from D12 |
ρ18 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | -√3 | -√3 | 1 | √3 | √3 | orthogonal lifted from D12 |
ρ19 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ20 | 2 | -2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ21 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 4 | -4 | -4 | 4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4⋊2S3, Schur index 2 |
ρ24 | 4 | -4 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from S3×Q8, Schur index 2 |
(1 44 25 24)(2 13 26 45)(3 46 27 14)(4 15 28 47)(5 48 29 16)(6 17 30 37)(7 38 31 18)(8 19 32 39)(9 40 33 20)(10 21 34 41)(11 42 35 22)(12 23 36 43)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 36 25 12)(2 11 26 35)(3 34 27 10)(4 9 28 33)(5 32 29 8)(6 7 30 31)(13 22 45 42)(14 41 46 21)(15 20 47 40)(16 39 48 19)(17 18 37 38)(23 24 43 44)
G:=sub<Sym(48)| (1,44,25,24)(2,13,26,45)(3,46,27,14)(4,15,28,47)(5,48,29,16)(6,17,30,37)(7,38,31,18)(8,19,32,39)(9,40,33,20)(10,21,34,41)(11,42,35,22)(12,23,36,43), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,36,25,12)(2,11,26,35)(3,34,27,10)(4,9,28,33)(5,32,29,8)(6,7,30,31)(13,22,45,42)(14,41,46,21)(15,20,47,40)(16,39,48,19)(17,18,37,38)(23,24,43,44)>;
G:=Group( (1,44,25,24)(2,13,26,45)(3,46,27,14)(4,15,28,47)(5,48,29,16)(6,17,30,37)(7,38,31,18)(8,19,32,39)(9,40,33,20)(10,21,34,41)(11,42,35,22)(12,23,36,43), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,36,25,12)(2,11,26,35)(3,34,27,10)(4,9,28,33)(5,32,29,8)(6,7,30,31)(13,22,45,42)(14,41,46,21)(15,20,47,40)(16,39,48,19)(17,18,37,38)(23,24,43,44) );
G=PermutationGroup([[(1,44,25,24),(2,13,26,45),(3,46,27,14),(4,15,28,47),(5,48,29,16),(6,17,30,37),(7,38,31,18),(8,19,32,39),(9,40,33,20),(10,21,34,41),(11,42,35,22),(12,23,36,43)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,36,25,12),(2,11,26,35),(3,34,27,10),(4,9,28,33),(5,32,29,8),(6,7,30,31),(13,22,45,42),(14,41,46,21),(15,20,47,40),(16,39,48,19),(17,18,37,38),(23,24,43,44)]])
C4.D12 is a maximal subgroup of
D6⋊5SD16 D6⋊SD16 C3⋊C8⋊1D4 D4.D12 Q8.11D12 D6⋊Q16 D6⋊1Q16 C3⋊C8.D4 D6.2SD16 C8⋊8D12 C8.2D12 C6.(C4○D8) D6.2Q16 C8⋊3D12 D6⋊2Q16 C2.D8⋊7S3 C6.2+ 1+4 C6.102+ 1+4 C6.52- 1+4 C42⋊10D6 C42.92D6 C42.94D6 C42.98D6 D4⋊5D12 D4⋊6D12 C42.229D6 C42.115D6 Q8×D12 Q8⋊6D12 C42.232D6 C42.134D6 Dic6⋊19D4 C4⋊C4⋊21D6 C6.722- 1+4 D12⋊20D4 S3×C22⋊Q8 C6.162- 1+4 D12⋊22D4 Dic6⋊21D4 C6.512+ 1+4 C6.1182+ 1+4 C6.242- 1+4 C6.592+ 1+4 C6.612+ 1+4 C6.1222+ 1+4 C6.852- 1+4 C6.692+ 1+4 C42.148D6 D12⋊7Q8 C42.237D6 C42.150D6 C42.152D6 C42.156D6 C42.157D6 C42⋊26D6 C42.161D6 C42.164D6 C42.165D6 C42.241D6 D12⋊9Q8 C42.177D6 C42.178D6 D18⋊2Q8 D6⋊7Dic6 C12.30D12 D6⋊2Dic6 C62.65C23 C12.31D12 C60.45D4 D30⋊9Q8 D6⋊2Dic10 D30⋊2Q8 D30⋊6Q8
C4.D12 is a maximal quotient of
C2.(C4×D12) (C2×C4)⋊Dic6 (C2×C4).17D12 D6⋊C4⋊C4 (C22×S3)⋊Q8 (C2×C12).33D4 Dic6.3Q8 D12⋊3Q8 D12⋊4Q8 D12.3Q8 Dic6⋊3Q8 Dic6⋊4Q8 C4.(D6⋊C4) (C2×C4).44D12 C4⋊C4⋊6Dic3 C4⋊(D6⋊C4) (C2×C12).56D4 D18⋊2Q8 D6⋊7Dic6 C12.30D12 D6⋊2Dic6 C62.65C23 C12.31D12 C60.45D4 D30⋊9Q8 D6⋊2Dic10 D30⋊2Q8 D30⋊6Q8
Matrix representation of C4.D12 ►in GL4(𝔽13) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 5 | 0 |
0 | 0 | 0 | 8 |
6 | 10 | 0 | 0 |
3 | 3 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
3 | 3 | 0 | 0 |
6 | 10 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 12 | 0 |
G:=sub<GL(4,GF(13))| [1,0,0,0,0,1,0,0,0,0,5,0,0,0,0,8],[6,3,0,0,10,3,0,0,0,0,0,1,0,0,1,0],[3,6,0,0,3,10,0,0,0,0,0,12,0,0,1,0] >;
C4.D12 in GAP, Magma, Sage, TeX
C_4.D_{12}
% in TeX
G:=Group("C4.D12");
// GroupNames label
G:=SmallGroup(96,104);
// by ID
G=gap.SmallGroup(96,104);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,103,218,188,122,2309]);
// Polycyclic
G:=Group<a,b,c|a^4=b^12=1,c^2=a^2,b*a*b^-1=c*a*c^-1=a^-1,c*b*c^-1=a^2*b^-1>;
// generators/relations
Export