Copied to
clipboard

G = C12⋊Q8order 96 = 25·3

The semidirect product of C12 and Q8 acting via Q8/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12⋊Q8, C41Dic6, Dic31Q8, Dic3.2D4, C32(C4⋊Q8), C4⋊C4.4S3, C2.4(S3×Q8), C6.5(C2×Q8), (C2×C4).42D6, C6.22(C2×D4), C2.11(S3×D4), C2.7(C2×Dic6), Dic3⋊C4.2C2, C4⋊Dic3.11C2, (C2×C6).29C23, (C2×C12).4C22, (C4×Dic3).1C2, (C2×Dic6).3C2, C22.46(C22×S3), (C2×Dic3).8C22, (C3×C4⋊C4).5C2, SmallGroup(96,95)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C12⋊Q8
C1C3C6C2×C6C2×Dic3C4×Dic3 — C12⋊Q8
C3C2×C6 — C12⋊Q8
C1C22C4⋊C4

Generators and relations for C12⋊Q8
 G = < a,b,c | a12=b4=1, c2=b2, bab-1=a7, cac-1=a5, cbc-1=b-1 >

Subgroups: 138 in 68 conjugacy classes, 37 normal (19 characteristic)
C1, C2, C3, C4, C4, C22, C6, C2×C4, C2×C4, C2×C4, Q8, Dic3, Dic3, C12, C12, C2×C6, C42, C4⋊C4, C4⋊C4, C2×Q8, Dic6, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C4⋊Q8, C4×Dic3, Dic3⋊C4, C4⋊Dic3, C3×C4⋊C4, C2×Dic6, C12⋊Q8
Quotients: C1, C2, C22, S3, D4, Q8, C23, D6, C2×D4, C2×Q8, Dic6, C22×S3, C4⋊Q8, C2×Dic6, S3×D4, S3×Q8, C12⋊Q8

Character table of C12⋊Q8

 class 12A2B2C34A4B4C4D4E4F4G4H4I4J6A6B6C12A12B12C12D12E12F
 size 11112224466661212222444444
ρ1111111111111111111111111    trivial
ρ211111-1-11-11-11-11-1111-11-1-1-11    linear of order 2
ρ311111-1-1-111-11-1-11111-1-11-11-1    linear of order 2
ρ41111111-1-11111-1-11111-1-11-1-1    linear of order 2
ρ511111-1-11-1-11-11-11111-11-1-1-11    linear of order 2
ρ6111111111-1-1-1-1-1-1111111111    linear of order 2
ρ71111111-1-1-1-1-1-1111111-1-11-1-1    linear of order 2
ρ811111-1-1-11-11-111-1111-1-11-11-1    linear of order 2
ρ92222-1-2-2-22000000-1-1-111-11-11    orthogonal lifted from D6
ρ102222-122-2-2000000-1-1-1-111-111    orthogonal lifted from D6
ρ112222-12222000000-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ122222-1-2-22-2000000-1-1-11-1111-1    orthogonal lifted from D6
ρ132-22-2200000-202002-2-2000000    orthogonal lifted from D4
ρ142-22-220000020-2002-2-2000000    orthogonal lifted from D4
ρ1522-2-22-2200000000-22-2200-200    symplectic lifted from Q8, Schur index 2
ρ162-2-2220000-202000-2-22000000    symplectic lifted from Q8, Schur index 2
ρ172-2-222000020-2000-2-22000000    symplectic lifted from Q8, Schur index 2
ρ1822-2-222-200000000-22-2-200200    symplectic lifted from Q8, Schur index 2
ρ1922-2-2-12-2000000001-1113-3-13-3    symplectic lifted from Dic6, Schur index 2
ρ2022-2-2-12-2000000001-111-33-1-33    symplectic lifted from Dic6, Schur index 2
ρ2122-2-2-1-22000000001-11-1331-3-3    symplectic lifted from Dic6, Schur index 2
ρ2222-2-2-1-22000000001-11-1-3-3133    symplectic lifted from Dic6, Schur index 2
ρ234-44-4-20000000000-222000000    orthogonal lifted from S3×D4
ρ244-4-44-2000000000022-2000000    symplectic lifted from S3×Q8, Schur index 2

Smallest permutation representation of C12⋊Q8
Regular action on 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 92 18 70)(2 87 19 65)(3 94 20 72)(4 89 21 67)(5 96 22 62)(6 91 23 69)(7 86 24 64)(8 93 13 71)(9 88 14 66)(10 95 15 61)(11 90 16 68)(12 85 17 63)(25 48 74 60)(26 43 75 55)(27 38 76 50)(28 45 77 57)(29 40 78 52)(30 47 79 59)(31 42 80 54)(32 37 81 49)(33 44 82 56)(34 39 83 51)(35 46 84 58)(36 41 73 53)
(1 84 18 35)(2 77 19 28)(3 82 20 33)(4 75 21 26)(5 80 22 31)(6 73 23 36)(7 78 24 29)(8 83 13 34)(9 76 14 27)(10 81 15 32)(11 74 16 25)(12 79 17 30)(37 61 49 95)(38 66 50 88)(39 71 51 93)(40 64 52 86)(41 69 53 91)(42 62 54 96)(43 67 55 89)(44 72 56 94)(45 65 57 87)(46 70 58 92)(47 63 59 85)(48 68 60 90)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,92,18,70)(2,87,19,65)(3,94,20,72)(4,89,21,67)(5,96,22,62)(6,91,23,69)(7,86,24,64)(8,93,13,71)(9,88,14,66)(10,95,15,61)(11,90,16,68)(12,85,17,63)(25,48,74,60)(26,43,75,55)(27,38,76,50)(28,45,77,57)(29,40,78,52)(30,47,79,59)(31,42,80,54)(32,37,81,49)(33,44,82,56)(34,39,83,51)(35,46,84,58)(36,41,73,53), (1,84,18,35)(2,77,19,28)(3,82,20,33)(4,75,21,26)(5,80,22,31)(6,73,23,36)(7,78,24,29)(8,83,13,34)(9,76,14,27)(10,81,15,32)(11,74,16,25)(12,79,17,30)(37,61,49,95)(38,66,50,88)(39,71,51,93)(40,64,52,86)(41,69,53,91)(42,62,54,96)(43,67,55,89)(44,72,56,94)(45,65,57,87)(46,70,58,92)(47,63,59,85)(48,68,60,90)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,92,18,70)(2,87,19,65)(3,94,20,72)(4,89,21,67)(5,96,22,62)(6,91,23,69)(7,86,24,64)(8,93,13,71)(9,88,14,66)(10,95,15,61)(11,90,16,68)(12,85,17,63)(25,48,74,60)(26,43,75,55)(27,38,76,50)(28,45,77,57)(29,40,78,52)(30,47,79,59)(31,42,80,54)(32,37,81,49)(33,44,82,56)(34,39,83,51)(35,46,84,58)(36,41,73,53), (1,84,18,35)(2,77,19,28)(3,82,20,33)(4,75,21,26)(5,80,22,31)(6,73,23,36)(7,78,24,29)(8,83,13,34)(9,76,14,27)(10,81,15,32)(11,74,16,25)(12,79,17,30)(37,61,49,95)(38,66,50,88)(39,71,51,93)(40,64,52,86)(41,69,53,91)(42,62,54,96)(43,67,55,89)(44,72,56,94)(45,65,57,87)(46,70,58,92)(47,63,59,85)(48,68,60,90) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,92,18,70),(2,87,19,65),(3,94,20,72),(4,89,21,67),(5,96,22,62),(6,91,23,69),(7,86,24,64),(8,93,13,71),(9,88,14,66),(10,95,15,61),(11,90,16,68),(12,85,17,63),(25,48,74,60),(26,43,75,55),(27,38,76,50),(28,45,77,57),(29,40,78,52),(30,47,79,59),(31,42,80,54),(32,37,81,49),(33,44,82,56),(34,39,83,51),(35,46,84,58),(36,41,73,53)], [(1,84,18,35),(2,77,19,28),(3,82,20,33),(4,75,21,26),(5,80,22,31),(6,73,23,36),(7,78,24,29),(8,83,13,34),(9,76,14,27),(10,81,15,32),(11,74,16,25),(12,79,17,30),(37,61,49,95),(38,66,50,88),(39,71,51,93),(40,64,52,86),(41,69,53,91),(42,62,54,96),(43,67,55,89),(44,72,56,94),(45,65,57,87),(46,70,58,92),(47,63,59,85),(48,68,60,90)]])

C12⋊Q8 is a maximal subgroup of
Dic3.D8  Dic3.SD16  D4⋊Dic6  C12⋊Q8⋊C2  Q82Dic6  Dic3.1Q16  Q83Dic6  (C2×C8).D6  Dic6⋊Q8  C245Q8  C243Q8  D12⋊Q8  C242Q8  Dic3.Q16  C244Q8  D122Q8  C6.72+ 1+4  C6.2- 1+4  C6.102+ 1+4  C42.88D6  C42.90D6  C42.97D6  C42.98D6  D4×Dic6  D45Dic6  C42.228D6  C42.115D6  Q8×Dic6  Q86Dic6  C42.232D6  C42.133D6  C12⋊(C4○D4)  C6.712- 1+4  C6.732- 1+4  C6.452+ 1+4  (Q8×Dic3)⋊C2  C6.752- 1+4  C6.162- 1+4  Dic621D4  C6.1182+ 1+4  C6.232- 1+4  C6.242- 1+4  C6.252- 1+4  C6.792- 1+4  C6.812- 1+4  C6.822- 1+4  C6.652+ 1+4  Dic67Q8  C42.236D6  C42.148D6  D127Q8  C42.154D6  C42.157D6  C42.159D6  C42.160D6  C42.164D6  C42.165D6  Dic69Q8  S3×C4⋊Q8  D128Q8  C42.174D6  C36⋊Q8  C62.9C23  C62.10C23  C123Dic6  C12⋊Dic6  C122Dic6  Dic3⋊Dic10  Dic15⋊Q8  C204Dic6  C20⋊Dic6  C4⋊Dic30
C12⋊Q8 is a maximal quotient of
(C2×C12)⋊Q8  C6.(C4×Q8)  (C2×C4)⋊Dic6  C6.(C4⋊Q8)  C245Q8  C243Q8  C8.8Dic6  C242Q8  C244Q8  C8.6Dic6  C12⋊(C4⋊C4)  (C4×Dic3)⋊8C4  (C2×Dic3)⋊Q8  (C2×C12).54D4  C4⋊C46Dic3  C36⋊Q8  C62.9C23  C62.10C23  C123Dic6  C12⋊Dic6  C122Dic6  Dic3⋊Dic10  Dic15⋊Q8  C204Dic6  C20⋊Dic6  C4⋊Dic30

Matrix representation of C12⋊Q8 in GL4(𝔽13) generated by

10000
2400
00711
00126
,
8000
1500
0093
0034
,
3400
41000
0062
0017
G:=sub<GL(4,GF(13))| [10,2,0,0,0,4,0,0,0,0,7,12,0,0,11,6],[8,1,0,0,0,5,0,0,0,0,9,3,0,0,3,4],[3,4,0,0,4,10,0,0,0,0,6,1,0,0,2,7] >;

C12⋊Q8 in GAP, Magma, Sage, TeX

C_{12}\rtimes Q_8
% in TeX

G:=Group("C12:Q8");
// GroupNames label

G:=SmallGroup(96,95);
// by ID

G=gap.SmallGroup(96,95);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,48,103,218,188,50,2309]);
// Polycyclic

G:=Group<a,b,c|a^12=b^4=1,c^2=b^2,b*a*b^-1=a^7,c*a*c^-1=a^5,c*b*c^-1=b^-1>;
// generators/relations

Export

Character table of C12⋊Q8 in TeX

׿
×
𝔽