Extensions 1→N→G→Q→1 with N=C40 and Q=C2

Direct product G=N×Q with N=C40 and Q=C2
dρLabelID
C2×C4080C2xC4080,23

Semidirect products G=N:Q with N=C40 and Q=C2
extensionφ:Q→Aut NdρLabelID
C401C2 = D40φ: C2/C1C2 ⊆ Aut C40402+C40:1C280,7
C402C2 = C40⋊C2φ: C2/C1C2 ⊆ Aut C40402C40:2C280,6
C403C2 = C8×D5φ: C2/C1C2 ⊆ Aut C40402C40:3C280,4
C404C2 = C8⋊D5φ: C2/C1C2 ⊆ Aut C40402C40:4C280,5
C405C2 = C5×D8φ: C2/C1C2 ⊆ Aut C40402C40:5C280,25
C406C2 = C5×SD16φ: C2/C1C2 ⊆ Aut C40402C40:6C280,26
C407C2 = C5×M4(2)φ: C2/C1C2 ⊆ Aut C40402C40:7C280,24

Non-split extensions G=N.Q with N=C40 and Q=C2
extensionφ:Q→Aut NdρLabelID
C40.1C2 = Dic20φ: C2/C1C2 ⊆ Aut C40802-C40.1C280,8
C40.2C2 = C52C16φ: C2/C1C2 ⊆ Aut C40802C40.2C280,1
C40.3C2 = C5×Q16φ: C2/C1C2 ⊆ Aut C40802C40.3C280,27

׿
×
𝔽