Copied to
clipboard

G = C5:2C16order 80 = 24·5

The semidirect product of C5 and C16 acting via C16/C8=C2

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C5:2C16, C8.2D5, C10.2C8, C40.2C2, C20.5C4, C4.2Dic5, C2.(C5:2C8), SmallGroup(80,1)

Series: Derived Chief Lower central Upper central

C1C5 — C5:2C16
C1C5C10C20C40 — C5:2C16
C5 — C5:2C16
C1C8

Generators and relations for C5:2C16
 G = < a,b | a5=b16=1, bab-1=a-1 >

Subgroups: 14 in 10 conjugacy classes, 9 normal (all characteristic)
Quotients: C1, C2, C4, C8, D5, C16, Dic5, C5:2C8, C5:2C16
5C16

Smallest permutation representation of C5:2C16
Regular action on 80 points
Generators in S80
(1 18 78 47 61)(2 62 48 79 19)(3 20 80 33 63)(4 64 34 65 21)(5 22 66 35 49)(6 50 36 67 23)(7 24 68 37 51)(8 52 38 69 25)(9 26 70 39 53)(10 54 40 71 27)(11 28 72 41 55)(12 56 42 73 29)(13 30 74 43 57)(14 58 44 75 31)(15 32 76 45 59)(16 60 46 77 17)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)

G:=sub<Sym(80)| (1,18,78,47,61)(2,62,48,79,19)(3,20,80,33,63)(4,64,34,65,21)(5,22,66,35,49)(6,50,36,67,23)(7,24,68,37,51)(8,52,38,69,25)(9,26,70,39,53)(10,54,40,71,27)(11,28,72,41,55)(12,56,42,73,29)(13,30,74,43,57)(14,58,44,75,31)(15,32,76,45,59)(16,60,46,77,17), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)>;

G:=Group( (1,18,78,47,61)(2,62,48,79,19)(3,20,80,33,63)(4,64,34,65,21)(5,22,66,35,49)(6,50,36,67,23)(7,24,68,37,51)(8,52,38,69,25)(9,26,70,39,53)(10,54,40,71,27)(11,28,72,41,55)(12,56,42,73,29)(13,30,74,43,57)(14,58,44,75,31)(15,32,76,45,59)(16,60,46,77,17), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80) );

G=PermutationGroup([[(1,18,78,47,61),(2,62,48,79,19),(3,20,80,33,63),(4,64,34,65,21),(5,22,66,35,49),(6,50,36,67,23),(7,24,68,37,51),(8,52,38,69,25),(9,26,70,39,53),(10,54,40,71,27),(11,28,72,41,55),(12,56,42,73,29),(13,30,74,43,57),(14,58,44,75,31),(15,32,76,45,59),(16,60,46,77,17)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)]])

C5:2C16 is a maximal subgroup of
C5:C32  D5xC16  C80:C2  C20.4C8  C5:D16  D8.D5  C5:SD32  C5:Q32  C15:3C16  C25:2C16  C52:7C16  C52:3C16
C5:2C16 is a maximal quotient of
C5:2C32  C15:3C16  C25:2C16  C52:7C16  C52:3C16

32 conjugacy classes

class 1  2 4A4B5A5B8A8B8C8D10A10B16A···16H20A20B20C20D40A···40H
order1244558888101016···162020202040···40
size1111221111225···522222···2

32 irreducible representations

dim111112222
type+++-
imageC1C2C4C8C16D5Dic5C5:2C8C5:2C16
kernelC5:2C16C40C20C10C5C8C4C2C1
# reps112482248

Matrix representation of C5:2C16 in GL2(F41) generated by

4018
3935
,
2923
1512
G:=sub<GL(2,GF(41))| [40,39,18,35],[29,15,23,12] >;

C5:2C16 in GAP, Magma, Sage, TeX

C_5\rtimes_2C_{16}
% in TeX

G:=Group("C5:2C16");
// GroupNames label

G:=SmallGroup(80,1);
// by ID

G=gap.SmallGroup(80,1);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-5,10,26,42,1604]);
// Polycyclic

G:=Group<a,b|a^5=b^16=1,b*a*b^-1=a^-1>;
// generators/relations

Export

Subgroup lattice of C5:2C16 in TeX

׿
x
:
Z
F
o
wr
Q
<