metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: C5⋊2C16, C8.2D5, C10.2C8, C40.2C2, C20.5C4, C4.2Dic5, C2.(C5⋊2C8), SmallGroup(80,1)
Series: Derived ►Chief ►Lower central ►Upper central
C5 — C5⋊2C16 |
Generators and relations for C5⋊2C16
G = < a,b | a5=b16=1, bab-1=a-1 >
(1 18 78 47 61)(2 62 48 79 19)(3 20 80 33 63)(4 64 34 65 21)(5 22 66 35 49)(6 50 36 67 23)(7 24 68 37 51)(8 52 38 69 25)(9 26 70 39 53)(10 54 40 71 27)(11 28 72 41 55)(12 56 42 73 29)(13 30 74 43 57)(14 58 44 75 31)(15 32 76 45 59)(16 60 46 77 17)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
G:=sub<Sym(80)| (1,18,78,47,61)(2,62,48,79,19)(3,20,80,33,63)(4,64,34,65,21)(5,22,66,35,49)(6,50,36,67,23)(7,24,68,37,51)(8,52,38,69,25)(9,26,70,39,53)(10,54,40,71,27)(11,28,72,41,55)(12,56,42,73,29)(13,30,74,43,57)(14,58,44,75,31)(15,32,76,45,59)(16,60,46,77,17), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)>;
G:=Group( (1,18,78,47,61)(2,62,48,79,19)(3,20,80,33,63)(4,64,34,65,21)(5,22,66,35,49)(6,50,36,67,23)(7,24,68,37,51)(8,52,38,69,25)(9,26,70,39,53)(10,54,40,71,27)(11,28,72,41,55)(12,56,42,73,29)(13,30,74,43,57)(14,58,44,75,31)(15,32,76,45,59)(16,60,46,77,17), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80) );
G=PermutationGroup([[(1,18,78,47,61),(2,62,48,79,19),(3,20,80,33,63),(4,64,34,65,21),(5,22,66,35,49),(6,50,36,67,23),(7,24,68,37,51),(8,52,38,69,25),(9,26,70,39,53),(10,54,40,71,27),(11,28,72,41,55),(12,56,42,73,29),(13,30,74,43,57),(14,58,44,75,31),(15,32,76,45,59),(16,60,46,77,17)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)]])
C5⋊2C16 is a maximal subgroup of
C5⋊C32 D5×C16 C80⋊C2 C20.4C8 C5⋊D16 D8.D5 C5⋊SD32 C5⋊Q32 C15⋊3C16 C25⋊2C16 C52⋊7C16 C52⋊3C16
C5⋊2C16 is a maximal quotient of
C5⋊2C32 C15⋊3C16 C25⋊2C16 C52⋊7C16 C52⋊3C16
32 conjugacy classes
class | 1 | 2 | 4A | 4B | 5A | 5B | 8A | 8B | 8C | 8D | 10A | 10B | 16A | ··· | 16H | 20A | 20B | 20C | 20D | 40A | ··· | 40H |
order | 1 | 2 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | 10 | 16 | ··· | 16 | 20 | 20 | 20 | 20 | 40 | ··· | 40 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 5 | ··· | 5 | 2 | 2 | 2 | 2 | 2 | ··· | 2 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
type | + | + | + | - | |||||
image | C1 | C2 | C4 | C8 | C16 | D5 | Dic5 | C5⋊2C8 | C5⋊2C16 |
kernel | C5⋊2C16 | C40 | C20 | C10 | C5 | C8 | C4 | C2 | C1 |
# reps | 1 | 1 | 2 | 4 | 8 | 2 | 2 | 4 | 8 |
Matrix representation of C5⋊2C16 ►in GL2(𝔽41) generated by
40 | 18 |
39 | 35 |
29 | 23 |
15 | 12 |
G:=sub<GL(2,GF(41))| [40,39,18,35],[29,15,23,12] >;
C5⋊2C16 in GAP, Magma, Sage, TeX
C_5\rtimes_2C_{16}
% in TeX
G:=Group("C5:2C16");
// GroupNames label
G:=SmallGroup(80,1);
// by ID
G=gap.SmallGroup(80,1);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-5,10,26,42,1604]);
// Polycyclic
G:=Group<a,b|a^5=b^16=1,b*a*b^-1=a^-1>;
// generators/relations
Export