direct product, non-abelian, not soluble
Aliases: C2×A5⋊C4, C22.5S5, (C2×A5)⋊C4, A5⋊2(C2×C4), C2.2(C2×S5), (C22×A5).C2, (C2×A5).5C22, SmallGroup(480,952)
Series: Chief►Derived ►Lower central ►Upper central
A5 — C2×A5⋊C4 |
A5 — C2×A5⋊C4 |
Subgroups: 1140 in 117 conjugacy classes, 13 normal (7 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C5, S3, C6, C2×C4, C23, D5, C10, Dic3, C12, A4, D6, C2×C6, C22⋊C4, C22×C4, C24, F5, D10, C2×C10, C4×S3, C2×Dic3, C2×C12, C2×A4, C22×S3, C2×C22⋊C4, C2×F5, C22×D5, A4⋊C4, S3×C2×C4, C22×A4, A5, C22×F5, C2×A4⋊C4, C2×A5, C2×A5, A5⋊C4, C22×A5, C2×A5⋊C4
Quotients: C1, C2, C4, C22, C2×C4, S5, A5⋊C4, C2×S5, C2×A5⋊C4
Character table of C2×A5⋊C4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 5 | 6A | 6B | 6C | 10A | 10B | 10C | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 1 | 1 | 15 | 15 | 15 | 15 | 20 | 10 | 10 | 10 | 10 | 30 | 30 | 30 | 30 | 24 | 20 | 20 | 20 | 24 | 24 | 24 | 20 | 20 | 20 | 20 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -i | i | i | -i | -i | i | -i | i | 1 | -1 | -1 | 1 | 1 | -1 | -1 | i | -i | i | -i | linear of order 4 |
ρ6 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | i | -i | -i | i | i | -i | i | -i | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -i | i | -i | i | linear of order 4 |
ρ7 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -i | i | -i | i | i | -i | -i | i | 1 | -1 | 1 | -1 | -1 | 1 | -1 | i | -i | -i | i | linear of order 4 |
ρ8 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | i | -i | i | -i | -i | i | i | -i | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -i | i | i | -i | linear of order 4 |
ρ9 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S5 |
ρ10 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 1 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | orthogonal lifted from C2×S5 |
ρ11 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 1 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from S5 |
ρ12 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 1 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | orthogonal lifted from C2×S5 |
ρ13 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 1 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -i | i | -i | i | complex lifted from A5⋊C4 |
ρ14 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 1 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | i | -i | -i | i | complex lifted from A5⋊C4 |
ρ15 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 1 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -i | i | i | -i | complex lifted from A5⋊C4 |
ρ16 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 1 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | i | -i | i | -i | complex lifted from A5⋊C4 |
ρ17 | 5 | 5 | -5 | -5 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 0 | -1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | orthogonal lifted from C2×S5 |
ρ18 | 5 | 5 | -5 | -5 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 0 | -1 | 1 | 1 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | orthogonal lifted from C2×S5 |
ρ19 | 5 | 5 | 5 | 5 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | orthogonal lifted from S5 |
ρ20 | 5 | 5 | 5 | 5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S5 |
ρ21 | 5 | -5 | -5 | 5 | -1 | 1 | 1 | -1 | -1 | i | -i | i | -i | i | -i | -i | i | 0 | 1 | -1 | 1 | 0 | 0 | 0 | -i | i | i | -i | complex lifted from A5⋊C4 |
ρ22 | 5 | -5 | -5 | 5 | -1 | 1 | 1 | -1 | -1 | -i | i | -i | i | -i | i | i | -i | 0 | 1 | -1 | 1 | 0 | 0 | 0 | i | -i | -i | i | complex lifted from A5⋊C4 |
ρ23 | 5 | -5 | 5 | -5 | -1 | 1 | -1 | 1 | -1 | i | -i | -i | i | -i | i | -i | i | 0 | 1 | 1 | -1 | 0 | 0 | 0 | -i | i | -i | i | complex lifted from A5⋊C4 |
ρ24 | 5 | -5 | 5 | -5 | -1 | 1 | -1 | 1 | -1 | -i | i | i | -i | i | -i | i | -i | 0 | 1 | 1 | -1 | 0 | 0 | 0 | i | -i | i | -i | complex lifted from A5⋊C4 |
ρ25 | 6 | -6 | 6 | -6 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from A5⋊C4 |
ρ26 | 6 | -6 | -6 | 6 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | -1 | 1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from A5⋊C4 |
ρ27 | 6 | 6 | 6 | 6 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S5 |
ρ28 | 6 | 6 | -6 | -6 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×S5 |
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 14 7 20)(2 19 8 13)(3 17 9 23)(4 24 10 18)(5 21 11 15)(6 16 12 22)
G:=sub<Sym(24)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,14,7,20)(2,19,8,13)(3,17,9,23)(4,24,10,18)(5,21,11,15)(6,16,12,22)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,14,7,20)(2,19,8,13)(3,17,9,23)(4,24,10,18)(5,21,11,15)(6,16,12,22) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,14,7,20),(2,19,8,13),(3,17,9,23),(4,24,10,18),(5,21,11,15),(6,16,12,22)]])
G:=TransitiveGroup(24,1346);
Matrix representation of C2×A5⋊C4 ►in GL6(𝔽61)
11 | 0 | 0 | 0 | 0 | 0 |
0 | 50 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 60 |
0 | 0 | 1 | 60 | 0 | 0 |
0 | 0 | 1 | 0 | 60 | 0 |
50 | 0 | 0 | 0 | 0 | 0 |
0 | 50 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 0 | 0 |
0 | 0 | 60 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 0 |
0 | 0 | 0 | 0 | 0 | 60 |
G:=sub<GL(6,GF(61))| [11,0,0,0,0,0,0,50,0,0,0,0,0,0,1,1,1,1,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,60,0,0],[50,0,0,0,0,0,0,50,0,0,0,0,0,0,0,60,0,0,0,0,60,0,0,0,0,0,0,0,60,0,0,0,0,0,0,60] >;
C2×A5⋊C4 in GAP, Magma, Sage, TeX
C_2\times A_5\rtimes C_4
% in TeX
G:=Group("C2xA5:C4");
// GroupNames label
G:=SmallGroup(480,952);
// by ID
G=gap.SmallGroup(480,952);
# by ID
Export