Copied to
clipboard

G = C6.D18order 216 = 23·33

11st non-split extension by C6 of D18 acting via D18/C18=C2

metabelian, supersoluble, monomial

Aliases: C6.18D18, C18.18D6, C62.12S3, (C3×C9)⋊9D4, (C2×C6)⋊4D9, (C6×C18)⋊5C2, (C2×C18)⋊4S3, C93(C3⋊D4), C33(C9⋊D4), C9⋊Dic34C2, (C3×C6).54D6, C223(C9⋊S3), C3.(C327D4), (C3×C18).22C22, C32.5(C3⋊D4), (C2×C9⋊S3)⋊4C2, C2.5(C2×C9⋊S3), C6.12(C2×C3⋊S3), (C2×C6).6(C3⋊S3), SmallGroup(216,70)

Series: Derived Chief Lower central Upper central

C1C3×C18 — C6.D18
C1C3C32C3×C9C3×C18C2×C9⋊S3 — C6.D18
C3×C9C3×C18 — C6.D18
C1C2C22

Generators and relations for C6.D18
 G = < a,b,c | a6=b18=1, c2=a3, ab=ba, cac-1=a-1, cbc-1=a3b-1 >

Subgroups: 430 in 80 conjugacy classes, 33 normal (15 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C6, D4, C9, C32, Dic3, D6, C2×C6, C2×C6, D9, C18, C18, C3⋊S3, C3×C6, C3×C6, C3⋊D4, C3×C9, Dic9, D18, C2×C18, C3⋊Dic3, C2×C3⋊S3, C62, C9⋊S3, C3×C18, C3×C18, C9⋊D4, C327D4, C9⋊Dic3, C2×C9⋊S3, C6×C18, C6.D18
Quotients: C1, C2, C22, S3, D4, D6, D9, C3⋊S3, C3⋊D4, D18, C2×C3⋊S3, C9⋊S3, C9⋊D4, C327D4, C2×C9⋊S3, C6.D18

Smallest permutation representation of C6.D18
On 108 points
Generators in S108
(1 65 104 48 78 22)(2 66 105 49 79 23)(3 67 106 50 80 24)(4 68 107 51 81 25)(5 69 108 52 82 26)(6 70 91 53 83 27)(7 71 92 54 84 28)(8 72 93 37 85 29)(9 55 94 38 86 30)(10 56 95 39 87 31)(11 57 96 40 88 32)(12 58 97 41 89 33)(13 59 98 42 90 34)(14 60 99 43 73 35)(15 61 100 44 74 36)(16 62 101 45 75 19)(17 63 102 46 76 20)(18 64 103 47 77 21)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)
(1 18 48 47)(2 46 49 17)(3 16 50 45)(4 44 51 15)(5 14 52 43)(6 42 53 13)(7 12 54 41)(8 40 37 11)(9 10 38 39)(19 80 101 67)(20 66 102 79)(21 78 103 65)(22 64 104 77)(23 76 105 63)(24 62 106 75)(25 74 107 61)(26 60 108 73)(27 90 91 59)(28 58 92 89)(29 88 93 57)(30 56 94 87)(31 86 95 55)(32 72 96 85)(33 84 97 71)(34 70 98 83)(35 82 99 69)(36 68 100 81)

G:=sub<Sym(108)| (1,65,104,48,78,22)(2,66,105,49,79,23)(3,67,106,50,80,24)(4,68,107,51,81,25)(5,69,108,52,82,26)(6,70,91,53,83,27)(7,71,92,54,84,28)(8,72,93,37,85,29)(9,55,94,38,86,30)(10,56,95,39,87,31)(11,57,96,40,88,32)(12,58,97,41,89,33)(13,59,98,42,90,34)(14,60,99,43,73,35)(15,61,100,44,74,36)(16,62,101,45,75,19)(17,63,102,46,76,20)(18,64,103,47,77,21), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108), (1,18,48,47)(2,46,49,17)(3,16,50,45)(4,44,51,15)(5,14,52,43)(6,42,53,13)(7,12,54,41)(8,40,37,11)(9,10,38,39)(19,80,101,67)(20,66,102,79)(21,78,103,65)(22,64,104,77)(23,76,105,63)(24,62,106,75)(25,74,107,61)(26,60,108,73)(27,90,91,59)(28,58,92,89)(29,88,93,57)(30,56,94,87)(31,86,95,55)(32,72,96,85)(33,84,97,71)(34,70,98,83)(35,82,99,69)(36,68,100,81)>;

G:=Group( (1,65,104,48,78,22)(2,66,105,49,79,23)(3,67,106,50,80,24)(4,68,107,51,81,25)(5,69,108,52,82,26)(6,70,91,53,83,27)(7,71,92,54,84,28)(8,72,93,37,85,29)(9,55,94,38,86,30)(10,56,95,39,87,31)(11,57,96,40,88,32)(12,58,97,41,89,33)(13,59,98,42,90,34)(14,60,99,43,73,35)(15,61,100,44,74,36)(16,62,101,45,75,19)(17,63,102,46,76,20)(18,64,103,47,77,21), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108), (1,18,48,47)(2,46,49,17)(3,16,50,45)(4,44,51,15)(5,14,52,43)(6,42,53,13)(7,12,54,41)(8,40,37,11)(9,10,38,39)(19,80,101,67)(20,66,102,79)(21,78,103,65)(22,64,104,77)(23,76,105,63)(24,62,106,75)(25,74,107,61)(26,60,108,73)(27,90,91,59)(28,58,92,89)(29,88,93,57)(30,56,94,87)(31,86,95,55)(32,72,96,85)(33,84,97,71)(34,70,98,83)(35,82,99,69)(36,68,100,81) );

G=PermutationGroup([[(1,65,104,48,78,22),(2,66,105,49,79,23),(3,67,106,50,80,24),(4,68,107,51,81,25),(5,69,108,52,82,26),(6,70,91,53,83,27),(7,71,92,54,84,28),(8,72,93,37,85,29),(9,55,94,38,86,30),(10,56,95,39,87,31),(11,57,96,40,88,32),(12,58,97,41,89,33),(13,59,98,42,90,34),(14,60,99,43,73,35),(15,61,100,44,74,36),(16,62,101,45,75,19),(17,63,102,46,76,20),(18,64,103,47,77,21)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)], [(1,18,48,47),(2,46,49,17),(3,16,50,45),(4,44,51,15),(5,14,52,43),(6,42,53,13),(7,12,54,41),(8,40,37,11),(9,10,38,39),(19,80,101,67),(20,66,102,79),(21,78,103,65),(22,64,104,77),(23,76,105,63),(24,62,106,75),(25,74,107,61),(26,60,108,73),(27,90,91,59),(28,58,92,89),(29,88,93,57),(30,56,94,87),(31,86,95,55),(32,72,96,85),(33,84,97,71),(34,70,98,83),(35,82,99,69),(36,68,100,81)]])

C6.D18 is a maximal subgroup of   D18.3D6  Dic3.D18  S3×C9⋊D4  D9×C3⋊D4  C36.70D6  D4×C9⋊S3  C36.27D6
C6.D18 is a maximal quotient of   C6.Dic18  C6.11D36  C36.17D6  C36.18D6  C36.19D6  C36.20D6  C62.127D6

57 conjugacy classes

class 1 2A2B2C3A3B3C3D 4 6A···6L9A···9I18A···18AA
order1222333346···69···918···18
size112542222542···22···22···2

57 irreducible representations

dim11112222222222
type+++++++++++
imageC1C2C2C2S3S3D4D6D6D9C3⋊D4C3⋊D4D18C9⋊D4
kernelC6.D18C9⋊Dic3C2×C9⋊S3C6×C18C2×C18C62C3×C9C18C3×C6C2×C6C9C32C6C3
# reps111131131962918

Matrix representation of C6.D18 in GL4(𝔽37) generated by

363600
1000
00360
00036
,
363600
1000
00213
002426
,
363600
0100
001311
003524
G:=sub<GL(4,GF(37))| [36,1,0,0,36,0,0,0,0,0,36,0,0,0,0,36],[36,1,0,0,36,0,0,0,0,0,2,24,0,0,13,26],[36,0,0,0,36,1,0,0,0,0,13,35,0,0,11,24] >;

C6.D18 in GAP, Magma, Sage, TeX

C_6.D_{18}
% in TeX

G:=Group("C6.D18");
// GroupNames label

G:=SmallGroup(216,70);
// by ID

G=gap.SmallGroup(216,70);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-3,-3,73,2115,453,1444,5189]);
// Polycyclic

G:=Group<a,b,c|a^6=b^18=1,c^2=a^3,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=a^3*b^-1>;
// generators/relations

׿
×
𝔽