Copied to
clipboard

G = C9:D12order 216 = 23·33

The semidirect product of C9 and D12 acting via D12/D6=C2

metabelian, supersoluble, monomial

Aliases: D6:2D9, C9:2D12, Dic9:S3, C18.7D6, C6.7D18, C6.7S32, (C3xC9):3D4, C2.7(S3xD9), (S3xC18):4C2, (S3xC6).3S3, C3:1(C9:D4), (C3xC6).28D6, (C3xDic9):3C2, (C3xC18).7C22, C3.2(C3:D12), C32.3(C3:D4), (C2xC9:S3):2C2, SmallGroup(216,32)

Series: Derived Chief Lower central Upper central

C1C3xC18 — C9:D12
C1C3C32C3xC9C3xC18S3xC18 — C9:D12
C3xC9C3xC18 — C9:D12
C1C2

Generators and relations for C9:D12
 G = < a,b,c | a9=b12=c2=1, bab-1=cac=a-1, cbc=b-1 >

Subgroups: 362 in 58 conjugacy classes, 19 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, D4, C9, C9, C32, Dic3, C12, D6, D6, C2xC6, D9, C18, C18, C3xS3, C3:S3, C3xC6, D12, C3:D4, C3xC9, Dic9, D18, C2xC18, C3xDic3, S3xC6, C2xC3:S3, S3xC9, C9:S3, C3xC18, C9:D4, C3:D12, C3xDic9, S3xC18, C2xC9:S3, C9:D12
Quotients: C1, C2, C22, S3, D4, D6, D9, D12, C3:D4, D18, S32, C9:D4, C3:D12, S3xD9, C9:D12

Smallest permutation representation of C9:D12
On 36 points
Generators in S36
(1 26 24 9 34 20 5 30 16)(2 17 31 6 21 35 10 13 27)(3 28 14 11 36 22 7 32 18)(4 19 33 8 23 25 12 15 29)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)
(1 3)(4 12)(5 11)(6 10)(7 9)(13 31)(14 30)(15 29)(16 28)(17 27)(18 26)(19 25)(20 36)(21 35)(22 34)(23 33)(24 32)

G:=sub<Sym(36)| (1,26,24,9,34,20,5,30,16)(2,17,31,6,21,35,10,13,27)(3,28,14,11,36,22,7,32,18)(4,19,33,8,23,25,12,15,29), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36), (1,3)(4,12)(5,11)(6,10)(7,9)(13,31)(14,30)(15,29)(16,28)(17,27)(18,26)(19,25)(20,36)(21,35)(22,34)(23,33)(24,32)>;

G:=Group( (1,26,24,9,34,20,5,30,16)(2,17,31,6,21,35,10,13,27)(3,28,14,11,36,22,7,32,18)(4,19,33,8,23,25,12,15,29), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36), (1,3)(4,12)(5,11)(6,10)(7,9)(13,31)(14,30)(15,29)(16,28)(17,27)(18,26)(19,25)(20,36)(21,35)(22,34)(23,33)(24,32) );

G=PermutationGroup([[(1,26,24,9,34,20,5,30,16),(2,17,31,6,21,35,10,13,27),(3,28,14,11,36,22,7,32,18),(4,19,33,8,23,25,12,15,29)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36)], [(1,3),(4,12),(5,11),(6,10),(7,9),(13,31),(14,30),(15,29),(16,28),(17,27),(18,26),(19,25),(20,36),(21,35),(22,34),(23,33),(24,32)]])

C9:D12 is a maximal subgroup of   D12:D9  D6.D18  Dic9.D6  D9xD12  Dic3.D18  S3xC9:D4  D18:D6
C9:D12 is a maximal quotient of   C9:D24  C36.D6  C18.D12  C9:Dic12  Dic9:Dic3  C6.18D36  D6:Dic9

33 conjugacy classes

class 1 2A2B2C3A3B3C 4 6A6B6C6D6E9A9B9C9D9E9F12A12B18A18B18C18D18E18F18G···18L
order1222333466666999999121218181818181818···18
size11654224182246622244418182224446···6

33 irreducible representations

dim111122222222224444
type++++++++++++++++
imageC1C2C2C2S3S3D4D6D6D9D12C3:D4D18C9:D4S32C3:D12S3xD9C9:D12
kernelC9:D12C3xDic9S3xC18C2xC9:S3Dic9S3xC6C3xC9C18C3xC6D6C9C32C6C3C6C3C2C1
# reps111111111322361133

Matrix representation of C9:D12 in GL4(F37) generated by

1000
0100
001726
00116
,
5500
321000
0001
0010
,
1000
13600
00036
00360
G:=sub<GL(4,GF(37))| [1,0,0,0,0,1,0,0,0,0,17,11,0,0,26,6],[5,32,0,0,5,10,0,0,0,0,0,1,0,0,1,0],[1,1,0,0,0,36,0,0,0,0,0,36,0,0,36,0] >;

C9:D12 in GAP, Magma, Sage, TeX

C_9\rtimes D_{12}
% in TeX

G:=Group("C9:D12");
// GroupNames label

G:=SmallGroup(216,32);
// by ID

G=gap.SmallGroup(216,32);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-3,-3,73,31,1065,453,1444,2603]);
// Polycyclic

G:=Group<a,b,c|a^9=b^12=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<