p-group, metacyclic, nilpotent (class 6), monomial
Aliases: Q128, Dic32, C64.C2, Q64.C2, C4.3D16, C16.7D4, C8.12D8, C2.5D32, C32.4C22, 2-Sylow(SL(2,191)), SmallGroup(128,163)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C2 — C2 — C2 — C2 — C2 — C2 — C2 — C2 — C2 — C2 — C2 — C2 — C2 — C2 — C2 — C2 — C4 — C4 — C4 — C4 — C4 — C4 — C4 — C4 — C8 — C8 — C8 — C8 — C16 — C16 — C32 — Q128 |
Generators and relations for Q128
G = < a,b | a64=1, b2=a32, bab-1=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)
(1 86 33 118)(2 85 34 117)(3 84 35 116)(4 83 36 115)(5 82 37 114)(6 81 38 113)(7 80 39 112)(8 79 40 111)(9 78 41 110)(10 77 42 109)(11 76 43 108)(12 75 44 107)(13 74 45 106)(14 73 46 105)(15 72 47 104)(16 71 48 103)(17 70 49 102)(18 69 50 101)(19 68 51 100)(20 67 52 99)(21 66 53 98)(22 65 54 97)(23 128 55 96)(24 127 56 95)(25 126 57 94)(26 125 58 93)(27 124 59 92)(28 123 60 91)(29 122 61 90)(30 121 62 89)(31 120 63 88)(32 119 64 87)
G:=sub<Sym(128)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,86,33,118)(2,85,34,117)(3,84,35,116)(4,83,36,115)(5,82,37,114)(6,81,38,113)(7,80,39,112)(8,79,40,111)(9,78,41,110)(10,77,42,109)(11,76,43,108)(12,75,44,107)(13,74,45,106)(14,73,46,105)(15,72,47,104)(16,71,48,103)(17,70,49,102)(18,69,50,101)(19,68,51,100)(20,67,52,99)(21,66,53,98)(22,65,54,97)(23,128,55,96)(24,127,56,95)(25,126,57,94)(26,125,58,93)(27,124,59,92)(28,123,60,91)(29,122,61,90)(30,121,62,89)(31,120,63,88)(32,119,64,87)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,86,33,118)(2,85,34,117)(3,84,35,116)(4,83,36,115)(5,82,37,114)(6,81,38,113)(7,80,39,112)(8,79,40,111)(9,78,41,110)(10,77,42,109)(11,76,43,108)(12,75,44,107)(13,74,45,106)(14,73,46,105)(15,72,47,104)(16,71,48,103)(17,70,49,102)(18,69,50,101)(19,68,51,100)(20,67,52,99)(21,66,53,98)(22,65,54,97)(23,128,55,96)(24,127,56,95)(25,126,57,94)(26,125,58,93)(27,124,59,92)(28,123,60,91)(29,122,61,90)(30,121,62,89)(31,120,63,88)(32,119,64,87) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)], [(1,86,33,118),(2,85,34,117),(3,84,35,116),(4,83,36,115),(5,82,37,114),(6,81,38,113),(7,80,39,112),(8,79,40,111),(9,78,41,110),(10,77,42,109),(11,76,43,108),(12,75,44,107),(13,74,45,106),(14,73,46,105),(15,72,47,104),(16,71,48,103),(17,70,49,102),(18,69,50,101),(19,68,51,100),(20,67,52,99),(21,66,53,98),(22,65,54,97),(23,128,55,96),(24,127,56,95),(25,126,57,94),(26,125,58,93),(27,124,59,92),(28,123,60,91),(29,122,61,90),(30,121,62,89),(31,120,63,88),(32,119,64,87)]])
35 conjugacy classes
class | 1 | 2 | 4A | 4B | 4C | 8A | 8B | 16A | 16B | 16C | 16D | 32A | ··· | 32H | 64A | ··· | 64P |
order | 1 | 2 | 4 | 4 | 4 | 8 | 8 | 16 | 16 | 16 | 16 | 32 | ··· | 32 | 64 | ··· | 64 |
size | 1 | 1 | 2 | 32 | 32 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
35 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | - |
image | C1 | C2 | C2 | D4 | D8 | D16 | D32 | Q128 |
kernel | Q128 | C64 | Q64 | C16 | C8 | C4 | C2 | C1 |
# reps | 1 | 1 | 2 | 1 | 2 | 4 | 8 | 16 |
Matrix representation of Q128 ►in GL2(𝔽193) generated by
78 | 155 |
38 | 78 |
71 | 13 |
13 | 122 |
G:=sub<GL(2,GF(193))| [78,38,155,78],[71,13,13,122] >;
Q128 in GAP, Magma, Sage, TeX
Q_{128}
% in TeX
G:=Group("Q128");
// GroupNames label
G:=SmallGroup(128,163);
// by ID
G=gap.SmallGroup(128,163);
# by ID
G:=PCGroup([7,-2,2,-2,-2,-2,-2,-2,448,85,456,254,135,142,675,346,192,1684,851,242,4037,2028,124]);
// Polycyclic
G:=Group<a,b|a^64=1,b^2=a^32,b*a*b^-1=a^-1>;
// generators/relations
Export