Extensions 1→N→G→Q→1 with N=D8 and Q=D6

Direct product G=N×Q with N=D8 and Q=D6
dρLabelID
C2×S3×D848C2xS3xD8192,1313

Semidirect products G=N:Q with N=D8 and Q=D6
extensionφ:Q→Out NdρLabelID
D81D6 = S3×D16φ: D6/S3C2 ⊆ Out D8484+D8:1D6192,469
D82D6 = D8⋊D6φ: D6/S3C2 ⊆ Out D8484D8:2D6192,470
D83D6 = S3×C8⋊C22φ: D6/S3C2 ⊆ Out D8248+D8:3D6192,1331
D84D6 = D84D6φ: D6/S3C2 ⊆ Out D8488-D8:4D6192,1332
D85D6 = D85D6φ: D6/S3C2 ⊆ Out D8488+D8:5D6192,1333
D86D6 = D86D6φ: D6/S3C2 ⊆ Out D8488-D8:6D6192,1334
D87D6 = C2×C3⋊D16φ: D6/C6C2 ⊆ Out D896D8:7D6192,705
D88D6 = Q16⋊D6φ: D6/C6C2 ⊆ Out D8484+D8:8D6192,752
D89D6 = C2×D8⋊S3φ: D6/C6C2 ⊆ Out D848D8:9D6192,1314
D810D6 = SD16⋊D6φ: D6/C6C2 ⊆ Out D8484D8:10D6192,1327
D811D6 = D811D6φ: D6/C6C2 ⊆ Out D8484D8:11D6192,1329
D812D6 = C2×D83S3φ: trivial image96D8:12D6192,1315
D813D6 = D813D6φ: trivial image484D8:13D6192,1316
D814D6 = S3×C4○D8φ: trivial image484D8:14D6192,1326
D815D6 = D815D6φ: trivial image484+D8:15D6192,1328

Non-split extensions G=N.Q with N=D8 and Q=D6
extensionφ:Q→Out NdρLabelID
D8.1D6 = D163S3φ: D6/S3C2 ⊆ Out D8964-D8.1D6192,471
D8.2D6 = S3×SD32φ: D6/S3C2 ⊆ Out D8484D8.2D6192,472
D8.3D6 = D48⋊C2φ: D6/S3C2 ⊆ Out D8484+D8.3D6192,473
D8.4D6 = SD32⋊S3φ: D6/S3C2 ⊆ Out D8964-D8.4D6192,474
D8.5D6 = D6.2D8φ: D6/S3C2 ⊆ Out D8964D8.5D6192,475
D8.6D6 = D8.D6φ: D6/C6C2 ⊆ Out D8484D8.6D6192,706
D8.7D6 = C2×D8.S3φ: D6/C6C2 ⊆ Out D896D8.7D6192,707
D8.8D6 = Q16.D6φ: D6/C6C2 ⊆ Out D8964D8.8D6192,753
D8.9D6 = D8.9D6φ: D6/C6C2 ⊆ Out D8964-D8.9D6192,754
D8.10D6 = D8.10D6φ: trivial image964-D8.10D6192,1330

׿
×
𝔽