Extensions 1→N→G→Q→1 with N=D6 and Q=D8

Direct product G=N×Q with N=D6 and Q=D8
dρLabelID
C2×S3×D848C2xS3xD8192,1313

Semidirect products G=N:Q with N=D6 and Q=D8
extensionφ:Q→Out NdρLabelID
D61D8 = D6⋊D8φ: D8/C8C2 ⊆ Out D696D6:1D8192,334
D62D8 = D62D8φ: D8/C8C2 ⊆ Out D696D6:2D8192,442
D63D8 = D63D8φ: D8/C8C2 ⊆ Out D696D6:3D8192,716
D64D8 = D4⋊D12φ: D8/D4C2 ⊆ Out D648D6:4D8192,332
D65D8 = D12⋊D4φ: D8/D4C2 ⊆ Out D648D6:5D8192,715

Non-split extensions G=N.Q with N=D6 and Q=D8
extensionφ:Q→Out NdρLabelID
D6.1D8 = D163S3φ: D8/C8C2 ⊆ Out D6964-D6.1D8192,471
D6.2D8 = D6.2D8φ: D8/C8C2 ⊆ Out D6964D6.2D8192,475
D6.3D8 = D485C2φ: D8/C8C2 ⊆ Out D6964+D6.3D8192,478
D6.4D8 = D6.D8φ: D8/D4C2 ⊆ Out D696D6.4D8192,333
D6.5D8 = D6.5D8φ: D8/D4C2 ⊆ Out D696D6.5D8192,441
D6.6D8 = D8⋊D6φ: D8/D4C2 ⊆ Out D6484D6.6D8192,470
D6.7D8 = D48⋊C2φ: D8/D4C2 ⊆ Out D6484+D6.7D8192,473
D6.8D8 = SD32⋊S3φ: D8/D4C2 ⊆ Out D6964-D6.8D8192,474
D6.9D8 = Q32⋊S3φ: D8/D4C2 ⊆ Out D6964D6.9D8192,477
D6.10D8 = S3×D4⋊C4φ: trivial image48D6.10D8192,328
D6.11D8 = S3×C2.D8φ: trivial image96D6.11D8192,438
D6.12D8 = S3×D16φ: trivial image484+D6.12D8192,469
D6.13D8 = S3×SD32φ: trivial image484D6.13D8192,472
D6.14D8 = S3×Q32φ: trivial image964-D6.14D8192,476

׿
×
𝔽