Extensions 1→N→G→Q→1 with N=D4×Dic3 and Q=C2

Direct product G=N×Q with N=D4×Dic3 and Q=C2
dρLabelID
C2×D4×Dic396C2xD4xDic3192,1354

Semidirect products G=N:Q with N=D4×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×Dic3)⋊1C2 = Dic34D8φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3):1C2192,315
(D4×Dic3)⋊2C2 = D4⋊S3⋊C4φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3):2C2192,344
(D4×Dic3)⋊3C2 = Dic3×D8φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3):3C2192,708
(D4×Dic3)⋊4C2 = Dic3⋊D8φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3):4C2192,709
(D4×Dic3)⋊5C2 = D8⋊Dic3φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3):5C2192,711
(D4×Dic3)⋊6C2 = (C6×D8).C2φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3):6C2192,712
(D4×Dic3)⋊7C2 = (C3×D4).D4φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3):7C2192,724
(D4×Dic3)⋊8C2 = C4213D6φ: C2/C1C2 ⊆ Out D4×Dic348(D4xDic3):8C2192,1104
(D4×Dic3)⋊9C2 = C42.108D6φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3):9C2192,1105
(D4×Dic3)⋊10C2 = C24.67D6φ: C2/C1C2 ⊆ Out D4×Dic348(D4xDic3):10C2192,1145
(D4×Dic3)⋊11C2 = C24.43D6φ: C2/C1C2 ⊆ Out D4×Dic348(D4xDic3):11C2192,1146
(D4×Dic3)⋊12C2 = C24.44D6φ: C2/C1C2 ⊆ Out D4×Dic348(D4xDic3):12C2192,1150
(D4×Dic3)⋊13C2 = C24.46D6φ: C2/C1C2 ⊆ Out D4×Dic348(D4xDic3):13C2192,1152
(D4×Dic3)⋊14C2 = C12⋊(C4○D4)φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3):14C2192,1155
(D4×Dic3)⋊15C2 = Dic619D4φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3):15C2192,1157
(D4×Dic3)⋊16C2 = C4⋊C4.178D6φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3):16C2192,1159
(D4×Dic3)⋊17C2 = C6.342+ 1+4φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3):17C2192,1160
(D4×Dic3)⋊18C2 = C6.702- 1+4φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3):18C2192,1161
(D4×Dic3)⋊19C2 = C6.712- 1+4φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3):19C2192,1162
(D4×Dic3)⋊20C2 = C4⋊C421D6φ: C2/C1C2 ⊆ Out D4×Dic348(D4xDic3):20C2192,1165
(D4×Dic3)⋊21C2 = C6.732- 1+4φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3):21C2192,1170
(D4×Dic3)⋊22C2 = C6.432+ 1+4φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3):22C2192,1173
(D4×Dic3)⋊23C2 = C6.452+ 1+4φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3):23C2192,1175
(D4×Dic3)⋊24C2 = C6.462+ 1+4φ: C2/C1C2 ⊆ Out D4×Dic348(D4xDic3):24C2192,1176
(D4×Dic3)⋊25C2 = C6.1152+ 1+4φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3):25C2192,1177
(D4×Dic3)⋊26C2 = C6.472+ 1+4φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3):26C2192,1178
(D4×Dic3)⋊27C2 = C4⋊C4.197D6φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3):27C2192,1208
(D4×Dic3)⋊28C2 = C6.1222+ 1+4φ: C2/C1C2 ⊆ Out D4×Dic348(D4xDic3):28C2192,1217
(D4×Dic3)⋊29C2 = C6.852- 1+4φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3):29C2192,1224
(D4×Dic3)⋊30C2 = C42.234D6φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3):30C2192,1239
(D4×Dic3)⋊31C2 = C42.143D6φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3):31C2192,1240
(D4×Dic3)⋊32C2 = C42.144D6φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3):32C2192,1241
(D4×Dic3)⋊33C2 = C42.166D6φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3):33C2192,1272
(D4×Dic3)⋊34C2 = C42.238D6φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3):34C2192,1275
(D4×Dic3)⋊35C2 = Dic611D4φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3):35C2192,1277
(D4×Dic3)⋊36C2 = C42.168D6φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3):36C2192,1278
(D4×Dic3)⋊37C2 = C24.49D6φ: C2/C1C2 ⊆ Out D4×Dic348(D4xDic3):37C2192,1357
(D4×Dic3)⋊38C2 = D4×C3⋊D4φ: C2/C1C2 ⊆ Out D4×Dic348(D4xDic3):38C2192,1360
(D4×Dic3)⋊39C2 = C24.53D6φ: C2/C1C2 ⊆ Out D4×Dic348(D4xDic3):39C2192,1365
(D4×Dic3)⋊40C2 = C6.1042- 1+4φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3):40C2192,1383
(D4×Dic3)⋊41C2 = C6.1442+ 1+4φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3):41C2192,1386
(D4×Dic3)⋊42C2 = C6.1452+ 1+4φ: C2/C1C2 ⊆ Out D4×Dic348(D4xDic3):42C2192,1388
(D4×Dic3)⋊43C2 = C4×D42S3φ: trivial image96(D4xDic3):43C2192,1095
(D4×Dic3)⋊44C2 = C4×S3×D4φ: trivial image48(D4xDic3):44C2192,1103
(D4×Dic3)⋊45C2 = Dic3×C4○D4φ: trivial image96(D4xDic3):45C2192,1385

Non-split extensions G=N.Q with N=D4×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×Dic3).1C2 = D4.S3⋊C4φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3).1C2192,316
(D4×Dic3).2C2 = Dic36SD16φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3).2C2192,317
(D4×Dic3).3C2 = Dic3.D8φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3).3C2192,318
(D4×Dic3).4C2 = D4⋊Dic6φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3).4C2192,320
(D4×Dic3).5C2 = D4.Dic6φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3).5C2192,322
(D4×Dic3).6C2 = D4.2Dic6φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3).6C2192,325
(D4×Dic3).7C2 = Dic3×SD16φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3).7C2192,720
(D4×Dic3).8C2 = Dic33SD16φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3).8C2192,721
(D4×Dic3).9C2 = SD16⋊Dic3φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3).9C2192,723
(D4×Dic3).10C2 = D4×Dic6φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3).10C2192,1096
(D4×Dic3).11C2 = D45Dic6φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3).11C2192,1098
(D4×Dic3).12C2 = D46Dic6φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3).12C2192,1102
(D4×Dic3).13C2 = C6.802- 1+4φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3).13C2192,1209
(D4×Dic3).14C2 = C42.139D6φ: C2/C1C2 ⊆ Out D4×Dic396(D4xDic3).14C2192,1230

׿
×
𝔽