extension | φ:Q→Out N | d | ρ | Label | ID |
(D4×Dic3)⋊1C2 = Dic3⋊4D8 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3):1C2 | 192,315 |
(D4×Dic3)⋊2C2 = D4⋊S3⋊C4 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3):2C2 | 192,344 |
(D4×Dic3)⋊3C2 = Dic3×D8 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3):3C2 | 192,708 |
(D4×Dic3)⋊4C2 = Dic3⋊D8 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3):4C2 | 192,709 |
(D4×Dic3)⋊5C2 = D8⋊Dic3 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3):5C2 | 192,711 |
(D4×Dic3)⋊6C2 = (C6×D8).C2 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3):6C2 | 192,712 |
(D4×Dic3)⋊7C2 = (C3×D4).D4 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3):7C2 | 192,724 |
(D4×Dic3)⋊8C2 = C42⋊13D6 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 48 | | (D4xDic3):8C2 | 192,1104 |
(D4×Dic3)⋊9C2 = C42.108D6 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3):9C2 | 192,1105 |
(D4×Dic3)⋊10C2 = C24.67D6 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 48 | | (D4xDic3):10C2 | 192,1145 |
(D4×Dic3)⋊11C2 = C24.43D6 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 48 | | (D4xDic3):11C2 | 192,1146 |
(D4×Dic3)⋊12C2 = C24.44D6 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 48 | | (D4xDic3):12C2 | 192,1150 |
(D4×Dic3)⋊13C2 = C24.46D6 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 48 | | (D4xDic3):13C2 | 192,1152 |
(D4×Dic3)⋊14C2 = C12⋊(C4○D4) | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3):14C2 | 192,1155 |
(D4×Dic3)⋊15C2 = Dic6⋊19D4 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3):15C2 | 192,1157 |
(D4×Dic3)⋊16C2 = C4⋊C4.178D6 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3):16C2 | 192,1159 |
(D4×Dic3)⋊17C2 = C6.342+ 1+4 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3):17C2 | 192,1160 |
(D4×Dic3)⋊18C2 = C6.702- 1+4 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3):18C2 | 192,1161 |
(D4×Dic3)⋊19C2 = C6.712- 1+4 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3):19C2 | 192,1162 |
(D4×Dic3)⋊20C2 = C4⋊C4⋊21D6 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 48 | | (D4xDic3):20C2 | 192,1165 |
(D4×Dic3)⋊21C2 = C6.732- 1+4 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3):21C2 | 192,1170 |
(D4×Dic3)⋊22C2 = C6.432+ 1+4 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3):22C2 | 192,1173 |
(D4×Dic3)⋊23C2 = C6.452+ 1+4 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3):23C2 | 192,1175 |
(D4×Dic3)⋊24C2 = C6.462+ 1+4 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 48 | | (D4xDic3):24C2 | 192,1176 |
(D4×Dic3)⋊25C2 = C6.1152+ 1+4 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3):25C2 | 192,1177 |
(D4×Dic3)⋊26C2 = C6.472+ 1+4 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3):26C2 | 192,1178 |
(D4×Dic3)⋊27C2 = C4⋊C4.197D6 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3):27C2 | 192,1208 |
(D4×Dic3)⋊28C2 = C6.1222+ 1+4 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 48 | | (D4xDic3):28C2 | 192,1217 |
(D4×Dic3)⋊29C2 = C6.852- 1+4 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3):29C2 | 192,1224 |
(D4×Dic3)⋊30C2 = C42.234D6 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3):30C2 | 192,1239 |
(D4×Dic3)⋊31C2 = C42.143D6 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3):31C2 | 192,1240 |
(D4×Dic3)⋊32C2 = C42.144D6 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3):32C2 | 192,1241 |
(D4×Dic3)⋊33C2 = C42.166D6 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3):33C2 | 192,1272 |
(D4×Dic3)⋊34C2 = C42.238D6 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3):34C2 | 192,1275 |
(D4×Dic3)⋊35C2 = Dic6⋊11D4 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3):35C2 | 192,1277 |
(D4×Dic3)⋊36C2 = C42.168D6 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3):36C2 | 192,1278 |
(D4×Dic3)⋊37C2 = C24.49D6 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 48 | | (D4xDic3):37C2 | 192,1357 |
(D4×Dic3)⋊38C2 = D4×C3⋊D4 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 48 | | (D4xDic3):38C2 | 192,1360 |
(D4×Dic3)⋊39C2 = C24.53D6 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 48 | | (D4xDic3):39C2 | 192,1365 |
(D4×Dic3)⋊40C2 = C6.1042- 1+4 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3):40C2 | 192,1383 |
(D4×Dic3)⋊41C2 = C6.1442+ 1+4 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3):41C2 | 192,1386 |
(D4×Dic3)⋊42C2 = C6.1452+ 1+4 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 48 | | (D4xDic3):42C2 | 192,1388 |
(D4×Dic3)⋊43C2 = C4×D4⋊2S3 | φ: trivial image | 96 | | (D4xDic3):43C2 | 192,1095 |
(D4×Dic3)⋊44C2 = C4×S3×D4 | φ: trivial image | 48 | | (D4xDic3):44C2 | 192,1103 |
(D4×Dic3)⋊45C2 = Dic3×C4○D4 | φ: trivial image | 96 | | (D4xDic3):45C2 | 192,1385 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(D4×Dic3).1C2 = D4.S3⋊C4 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3).1C2 | 192,316 |
(D4×Dic3).2C2 = Dic3⋊6SD16 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3).2C2 | 192,317 |
(D4×Dic3).3C2 = Dic3.D8 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3).3C2 | 192,318 |
(D4×Dic3).4C2 = D4⋊Dic6 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3).4C2 | 192,320 |
(D4×Dic3).5C2 = D4.Dic6 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3).5C2 | 192,322 |
(D4×Dic3).6C2 = D4.2Dic6 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3).6C2 | 192,325 |
(D4×Dic3).7C2 = Dic3×SD16 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3).7C2 | 192,720 |
(D4×Dic3).8C2 = Dic3⋊3SD16 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3).8C2 | 192,721 |
(D4×Dic3).9C2 = SD16⋊Dic3 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3).9C2 | 192,723 |
(D4×Dic3).10C2 = D4×Dic6 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3).10C2 | 192,1096 |
(D4×Dic3).11C2 = D4⋊5Dic6 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3).11C2 | 192,1098 |
(D4×Dic3).12C2 = D4⋊6Dic6 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3).12C2 | 192,1102 |
(D4×Dic3).13C2 = C6.802- 1+4 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3).13C2 | 192,1209 |
(D4×Dic3).14C2 = C42.139D6 | φ: C2/C1 → C2 ⊆ Out D4×Dic3 | 96 | | (D4xDic3).14C2 | 192,1230 |