| extension | φ:Q→Aut N | d | ρ | Label | ID |
| C6.1(D4⋊C4) = C6.C4≀C2 | φ: D4⋊C4/C4⋊C4 → C2 ⊆ Aut C6 | 48 | | C6.1(D4:C4) | 192,10 |
| C6.2(D4⋊C4) = C12.47D8 | φ: D4⋊C4/C4⋊C4 → C2 ⊆ Aut C6 | 192 | | C6.2(D4:C4) | 192,41 |
| C6.3(D4⋊C4) = D12⋊2C8 | φ: D4⋊C4/C4⋊C4 → C2 ⊆ Aut C6 | 96 | | C6.3(D4:C4) | 192,42 |
| C6.4(D4⋊C4) = D24⋊8C4 | φ: D4⋊C4/C4⋊C4 → C2 ⊆ Aut C6 | 48 | 4 | C6.4(D4:C4) | 192,47 |
| C6.5(D4⋊C4) = C6.D16 | φ: D4⋊C4/C4⋊C4 → C2 ⊆ Aut C6 | 96 | | C6.5(D4:C4) | 192,50 |
| C6.6(D4⋊C4) = C6.Q32 | φ: D4⋊C4/C4⋊C4 → C2 ⊆ Aut C6 | 192 | | C6.6(D4:C4) | 192,51 |
| C6.7(D4⋊C4) = D24.C4 | φ: D4⋊C4/C4⋊C4 → C2 ⊆ Aut C6 | 48 | 4+ | C6.7(D4:C4) | 192,54 |
| C6.8(D4⋊C4) = C24.8D4 | φ: D4⋊C4/C4⋊C4 → C2 ⊆ Aut C6 | 96 | 4- | C6.8(D4:C4) | 192,55 |
| C6.9(D4⋊C4) = Dic12.C4 | φ: D4⋊C4/C4⋊C4 → C2 ⊆ Aut C6 | 96 | 4 | C6.9(D4:C4) | 192,56 |
| C6.10(D4⋊C4) = C4.17D24 | φ: D4⋊C4/C2×C8 → C2 ⊆ Aut C6 | 96 | | C6.10(D4:C4) | 192,18 |
| C6.11(D4⋊C4) = C22.2D24 | φ: D4⋊C4/C2×C8 → C2 ⊆ Aut C6 | 48 | | C6.11(D4:C4) | 192,29 |
| C6.12(D4⋊C4) = C4.D24 | φ: D4⋊C4/C2×C8 → C2 ⊆ Aut C6 | 96 | | C6.12(D4:C4) | 192,44 |
| C6.13(D4⋊C4) = C12.2D8 | φ: D4⋊C4/C2×C8 → C2 ⊆ Aut C6 | 192 | | C6.13(D4:C4) | 192,45 |
| C6.14(D4⋊C4) = C2.Dic24 | φ: D4⋊C4/C2×C8 → C2 ⊆ Aut C6 | 192 | | C6.14(D4:C4) | 192,62 |
| C6.15(D4⋊C4) = C2.D48 | φ: D4⋊C4/C2×C8 → C2 ⊆ Aut C6 | 96 | | C6.15(D4:C4) | 192,68 |
| C6.16(D4⋊C4) = D24.1C4 | φ: D4⋊C4/C2×C8 → C2 ⊆ Aut C6 | 96 | 2 | C6.16(D4:C4) | 192,69 |
| C6.17(D4⋊C4) = M5(2)⋊S3 | φ: D4⋊C4/C2×C8 → C2 ⊆ Aut C6 | 48 | 4+ | C6.17(D4:C4) | 192,75 |
| C6.18(D4⋊C4) = C12.4D8 | φ: D4⋊C4/C2×C8 → C2 ⊆ Aut C6 | 96 | 4- | C6.18(D4:C4) | 192,76 |
| C6.19(D4⋊C4) = D24⋊2C4 | φ: D4⋊C4/C2×C8 → C2 ⊆ Aut C6 | 48 | 4 | C6.19(D4:C4) | 192,77 |
| C6.20(D4⋊C4) = C12.9C42 | φ: D4⋊C4/C2×C8 → C2 ⊆ Aut C6 | 192 | | C6.20(D4:C4) | 192,110 |
| C6.21(D4⋊C4) = C12.C42 | φ: D4⋊C4/C2×D4 → C2 ⊆ Aut C6 | 192 | | C6.21(D4:C4) | 192,88 |
| C6.22(D4⋊C4) = C12.57D8 | φ: D4⋊C4/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.22(D4:C4) | 192,93 |
| C6.23(D4⋊C4) = (C6×D4)⋊C4 | φ: D4⋊C4/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.23(D4:C4) | 192,96 |
| C6.24(D4⋊C4) = C12.9D8 | φ: D4⋊C4/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.24(D4:C4) | 192,103 |
| C6.25(D4⋊C4) = C12.10D8 | φ: D4⋊C4/C2×D4 → C2 ⊆ Aut C6 | 192 | | C6.25(D4:C4) | 192,106 |
| C6.26(D4⋊C4) = D8⋊1Dic3 | φ: D4⋊C4/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.26(D4:C4) | 192,121 |
| C6.27(D4⋊C4) = D8.Dic3 | φ: D4⋊C4/C2×D4 → C2 ⊆ Aut C6 | 48 | 4 | C6.27(D4:C4) | 192,122 |
| C6.28(D4⋊C4) = C6.5Q32 | φ: D4⋊C4/C2×D4 → C2 ⊆ Aut C6 | 192 | | C6.28(D4:C4) | 192,123 |
| C6.29(D4⋊C4) = Q16.Dic3 | φ: D4⋊C4/C2×D4 → C2 ⊆ Aut C6 | 96 | 4 | C6.29(D4:C4) | 192,124 |
| C6.30(D4⋊C4) = D8⋊2Dic3 | φ: D4⋊C4/C2×D4 → C2 ⊆ Aut C6 | 48 | 4 | C6.30(D4:C4) | 192,125 |
| C6.31(D4⋊C4) = C24.41D4 | φ: D4⋊C4/C2×D4 → C2 ⊆ Aut C6 | 96 | 4 | C6.31(D4:C4) | 192,126 |
| C6.32(D4⋊C4) = C3×D4⋊C8 | central extension (φ=1) | 96 | | C6.32(D4:C4) | 192,131 |
| C6.33(D4⋊C4) = C3×C22.SD16 | central extension (φ=1) | 48 | | C6.33(D4:C4) | 192,133 |
| C6.34(D4⋊C4) = C3×C4.D8 | central extension (φ=1) | 96 | | C6.34(D4:C4) | 192,137 |
| C6.35(D4⋊C4) = C3×C4.10D8 | central extension (φ=1) | 192 | | C6.35(D4:C4) | 192,138 |
| C6.36(D4⋊C4) = C3×C22.4Q16 | central extension (φ=1) | 192 | | C6.36(D4:C4) | 192,146 |
| C6.37(D4⋊C4) = C3×C2.D16 | central extension (φ=1) | 96 | | C6.37(D4:C4) | 192,163 |
| C6.38(D4⋊C4) = C3×C2.Q32 | central extension (φ=1) | 192 | | C6.38(D4:C4) | 192,164 |
| C6.39(D4⋊C4) = C3×D8.C4 | central extension (φ=1) | 96 | 2 | C6.39(D4:C4) | 192,165 |
| C6.40(D4⋊C4) = C3×D8⋊2C4 | central extension (φ=1) | 48 | 4 | C6.40(D4:C4) | 192,166 |
| C6.41(D4⋊C4) = C3×M5(2)⋊C2 | central extension (φ=1) | 48 | 4 | C6.41(D4:C4) | 192,167 |
| C6.42(D4⋊C4) = C3×C8.17D4 | central extension (φ=1) | 96 | 4 | C6.42(D4:C4) | 192,168 |