Copied to
clipboard

G = M4(2).D6order 192 = 26·3

12nd non-split extension by M4(2) of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: M4(2).12D6, C3:C8.30D4, C8:C22:2S3, D4:D6:4C2, C4oD4.40D6, (C3xD4).11D4, (C2xD4).79D6, C4.178(S3xD4), (C3xQ8).11D4, C12.D4:9C2, C12.195(C2xD4), D4.4(C3:D4), C3:5(D4.4D4), D4.Dic3:5C2, C12.46D4:6C2, C12.53D4:5C2, (C2xC12).14C23, Q8.11(C3:D4), C6.124(C4:D4), (C6xD4).104C22, (C2xD12).129C22, (C3xM4(2)).9C22, C4.Dic3.24C22, C2.30(C23.14D6), C22.13(D4:2S3), (C2xD4:S3):22C2, (C3xC8:C22):6C2, C4.51(C2xC3:D4), (C2xC6).36(C4oD4), (C2xC3:C8).170C22, (C2xC4).14(C22xS3), (C3xC4oD4).12C22, SmallGroup(192,758)

Series: Derived Chief Lower central Upper central

C1C2xC12 — M4(2).D6
C1C3C6C12C2xC12C2xD12D4:D6 — M4(2).D6
C3C6C2xC12 — M4(2).D6
C1C2C2xC4C8:C22

Generators and relations for M4(2).D6
 G = < a,b,c,d | a8=b2=c6=1, d2=a6, bab=a5, cac-1=a-1, dad-1=a3b, cbc-1=dbd-1=a4b, dcd-1=a6c-1 >

Subgroups: 336 in 108 conjugacy classes, 37 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, D4, Q8, C23, C12, C12, D6, C2xC6, C2xC6, C2xC8, M4(2), M4(2), D8, SD16, C2xD4, C2xD4, C4oD4, C3:C8, C3:C8, C24, D12, C2xC12, C2xC12, C3xD4, C3xD4, C3xQ8, C22xS3, C22xC6, C4.D4, C8.C4, C8oD4, C2xD8, C8:C22, C8:C22, C2xC3:C8, C2xC3:C8, C4.Dic3, C4.Dic3, D4:S3, Q8:2S3, C3xM4(2), C3xD8, C3xSD16, C2xD12, C6xD4, C3xC4oD4, D4.4D4, C12.53D4, C12.46D4, C12.D4, C2xD4:S3, D4.Dic3, D4:D6, C3xC8:C22, M4(2).D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, C3:D4, C22xS3, C4:D4, S3xD4, D4:2S3, C2xC3:D4, D4.4D4, C23.14D6, M4(2).D6

Character table of M4(2).D6

 class 12A2B2C2D2E34A4B4C6A6B6C6D6E8A8B8C8D8E8F8G12A12B12C24A24B
 size 11248242224248886681212122444888
ρ1111111111111111111111111111    trivial
ρ2111-1-1-1111-111-1-1-1111-11-1111-111    linear of order 2
ρ3111-11-1111-11111-1-1-1-11-11111-1-1-1    linear of order 2
ρ41111-11111111-1-11-1-1-1-1-1-11111-1-1    linear of order 2
ρ5111-111111-11111-111-1-11-1-111-1-1-1    linear of order 2
ρ61111-1-1111111-1-1111-1111-1111-1-1    linear of order 2
ρ711111-1111111111-1-11-1-1-1-111111    linear of order 2
ρ8111-1-11111-111-1-1-1-1-111-11-111-111    linear of order 2
ρ9222220-1222-1-1-1-1-10020000-1-1-1-1-1    orthogonal lifted from S3
ρ102222-20-1222-1-111-100-20000-1-1-111    orthogonal lifted from D6
ρ11222-220-122-2-1-1-1-1100-20000-1-1111    orthogonal lifted from D6
ρ1222-200022-202-2000-2-2002002-2000    orthogonal lifted from D4
ρ1322-200022-202-20002200-2002-2000    orthogonal lifted from D4
ρ1422-2-2002-2222-200-20000000-22200    orthogonal lifted from D4
ρ15222-2-20-122-2-1-11110020000-1-11-1-1    orthogonal lifted from D6
ρ1622-22002-22-22-20020000000-22-200    orthogonal lifted from D4
ρ1722-2200-1-22-2-11-3--3-100000001-11-3--3    complex lifted from C3:D4
ρ1822-2-200-1-222-11--3-3100000001-1-1-3--3    complex lifted from C3:D4
ρ1922-2-200-1-222-11-3--3100000001-1-1--3-3    complex lifted from C3:D4
ρ2022-2200-1-22-2-11--3-3-100000001-11--3-3    complex lifted from C3:D4
ρ212220002-2-2022000000-2i02i0-2-2000    complex lifted from C4oD4
ρ222220002-2-20220000002i0-2i0-2-2000    complex lifted from C4oD4
ρ2344-4000-24-40-220000000000-22000    orthogonal lifted from S3xD4
ρ244-400004000-40000-22220000000000    orthogonal lifted from D4.4D4
ρ254-400004000-4000022-220000000000    orthogonal lifted from D4.4D4
ρ26444000-2-4-40-2-2000000000022000    symplectic lifted from D4:2S3, Schur index 2
ρ278-80000-400040000000000000000    orthogonal faithful, Schur index 2

Smallest permutation representation of M4(2).D6
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 5)(3 7)(9 13)(11 15)(17 21)(19 23)(26 30)(28 32)(34 38)(36 40)(42 46)(44 48)
(1 35 46 22 11 29)(2 34 47 21 12 28)(3 33 48 20 13 27)(4 40 41 19 14 26)(5 39 42 18 15 25)(6 38 43 17 16 32)(7 37 44 24 9 31)(8 36 45 23 10 30)
(1 29 7 27 5 25 3 31)(2 28 8 26 6 32 4 30)(9 33 15 39 13 37 11 35)(10 40 16 38 14 36 12 34)(17 41 23 47 21 45 19 43)(18 48 24 46 22 44 20 42)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,5)(3,7)(9,13)(11,15)(17,21)(19,23)(26,30)(28,32)(34,38)(36,40)(42,46)(44,48), (1,35,46,22,11,29)(2,34,47,21,12,28)(3,33,48,20,13,27)(4,40,41,19,14,26)(5,39,42,18,15,25)(6,38,43,17,16,32)(7,37,44,24,9,31)(8,36,45,23,10,30), (1,29,7,27,5,25,3,31)(2,28,8,26,6,32,4,30)(9,33,15,39,13,37,11,35)(10,40,16,38,14,36,12,34)(17,41,23,47,21,45,19,43)(18,48,24,46,22,44,20,42)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,5)(3,7)(9,13)(11,15)(17,21)(19,23)(26,30)(28,32)(34,38)(36,40)(42,46)(44,48), (1,35,46,22,11,29)(2,34,47,21,12,28)(3,33,48,20,13,27)(4,40,41,19,14,26)(5,39,42,18,15,25)(6,38,43,17,16,32)(7,37,44,24,9,31)(8,36,45,23,10,30), (1,29,7,27,5,25,3,31)(2,28,8,26,6,32,4,30)(9,33,15,39,13,37,11,35)(10,40,16,38,14,36,12,34)(17,41,23,47,21,45,19,43)(18,48,24,46,22,44,20,42) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,5),(3,7),(9,13),(11,15),(17,21),(19,23),(26,30),(28,32),(34,38),(36,40),(42,46),(44,48)], [(1,35,46,22,11,29),(2,34,47,21,12,28),(3,33,48,20,13,27),(4,40,41,19,14,26),(5,39,42,18,15,25),(6,38,43,17,16,32),(7,37,44,24,9,31),(8,36,45,23,10,30)], [(1,29,7,27,5,25,3,31),(2,28,8,26,6,32,4,30),(9,33,15,39,13,37,11,35),(10,40,16,38,14,36,12,34),(17,41,23,47,21,45,19,43),(18,48,24,46,22,44,20,42)]])

Matrix representation of M4(2).D6 in GL6(F73)

0720000
7200000
004021032
0040214132
00161600
0015332112
,
7200000
0720000
0072000
0007200
000010
00391501
,
36280000
28360000
000010
003458171
001000
001394615
,
37280000
45360000
003458171
000010
001000
003114639

G:=sub<GL(6,GF(73))| [0,72,0,0,0,0,72,0,0,0,0,0,0,0,40,40,16,15,0,0,21,21,16,33,0,0,0,41,0,21,0,0,32,32,0,12],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,39,0,0,0,72,0,15,0,0,0,0,1,0,0,0,0,0,0,1],[36,28,0,0,0,0,28,36,0,0,0,0,0,0,0,34,1,1,0,0,0,58,0,39,0,0,1,1,0,46,0,0,0,71,0,15],[37,45,0,0,0,0,28,36,0,0,0,0,0,0,34,0,1,31,0,0,58,0,0,1,0,0,1,1,0,46,0,0,71,0,0,39] >;

M4(2).D6 in GAP, Magma, Sage, TeX

M_4(2).D_6
% in TeX

G:=Group("M4(2).D6");
// GroupNames label

G:=SmallGroup(192,758);
// by ID

G=gap.SmallGroup(192,758);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,254,219,1123,297,136,1684,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^6=1,d^2=a^6,b*a*b=a^5,c*a*c^-1=a^-1,d*a*d^-1=a^3*b,c*b*c^-1=d*b*d^-1=a^4*b,d*c*d^-1=a^6*c^-1>;
// generators/relations

Export

Character table of M4(2).D6 in TeX

׿
x
:
Z
F
o
wr
Q
<