Extensions 1→N→G→Q→1 with N=C3xDic5 and Q=C2xC4

Direct product G=NxQ with N=C3xDic5 and Q=C2xC4
dρLabelID
Dic5xC2xC12480Dic5xC2xC12480,715

Semidirect products G=N:Q with N=C3xDic5 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
(C3xDic5):1(C2xC4) = S3xC10.D4φ: C2xC4/C2C22 ⊆ Out C3xDic5240(C3xDic5):1(C2xC4)480,475
(C3xDic5):2(C2xC4) = D30.Q8φ: C2xC4/C2C22 ⊆ Out C3xDic5240(C3xDic5):2(C2xC4)480,480
(C3xDic5):3(C2xC4) = Dic15:14D4φ: C2xC4/C2C22 ⊆ Out C3xDic5240(C3xDic5):3(C2xC4)480,482
(C3xDic5):4(C2xC4) = C15:22(C4xD4)φ: C2xC4/C2C22 ⊆ Out C3xDic5240(C3xDic5):4(C2xC4)480,522
(C3xDic5):5(C2xC4) = Dic3xC5:D4φ: C2xC4/C2C22 ⊆ Out C3xDic5240(C3xDic5):5(C2xC4)480,629
(C3xDic5):6(C2xC4) = Dic15:16D4φ: C2xC4/C2C22 ⊆ Out C3xDic5240(C3xDic5):6(C2xC4)480,635
(C3xDic5):7(C2xC4) = C4xS3xF5φ: C2xC4/C2C22 ⊆ Out C3xDic5608(C3xDic5):7(C2xC4)480,994
(C3xDic5):8(C2xC4) = F5xD12φ: C2xC4/C2C22 ⊆ Out C3xDic5608+(C3xDic5):8(C2xC4)480,995
(C3xDic5):9(C2xC4) = S3xC4:F5φ: C2xC4/C2C22 ⊆ Out C3xDic5608(C3xDic5):9(C2xC4)480,996
(C3xDic5):10(C2xC4) = D60:3C4φ: C2xC4/C2C22 ⊆ Out C3xDic5608+(C3xDic5):10(C2xC4)480,997
(C3xDic5):11(C2xC4) = D4xC3:F5φ: C2xC4/C2C22 ⊆ Out C3xDic5608(C3xDic5):11(C2xC4)480,1067
(C3xDic5):12(C2xC4) = C3xD4xF5φ: C2xC4/C2C22 ⊆ Out C3xDic5608(C3xDic5):12(C2xC4)480,1054
(C3xDic5):13(C2xC4) = C4xS3xDic5φ: C2xC4/C4C2 ⊆ Out C3xDic5240(C3xDic5):13(C2xC4)480,473
(C3xDic5):14(C2xC4) = C4xD30.C2φ: C2xC4/C4C2 ⊆ Out C3xDic5240(C3xDic5):14(C2xC4)480,477
(C3xDic5):15(C2xC4) = Dic5:4D12φ: C2xC4/C4C2 ⊆ Out C3xDic5240(C3xDic5):15(C2xC4)480,481
(C3xDic5):16(C2xC4) = C4xC5:D12φ: C2xC4/C4C2 ⊆ Out C3xDic5240(C3xDic5):16(C2xC4)480,521
(C3xDic5):17(C2xC4) = C3xDic5:4D4φ: C2xC4/C4C2 ⊆ Out C3xDic5240(C3xDic5):17(C2xC4)480,674
(C3xDic5):18(C2xC4) = C12xC5:D4φ: C2xC4/C4C2 ⊆ Out C3xDic5240(C3xDic5):18(C2xC4)480,721
(C3xDic5):19(C2xC4) = C4xD5xDic3φ: C2xC4/C22C2 ⊆ Out C3xDic5240(C3xDic5):19(C2xC4)480,467
(C3xDic5):20(C2xC4) = D5xC4:Dic3φ: C2xC4/C22C2 ⊆ Out C3xDic5240(C3xDic5):20(C2xC4)480,488
(C3xDic5):21(C2xC4) = C2xDic3xDic5φ: C2xC4/C22C2 ⊆ Out C3xDic5480(C3xDic5):21(C2xC4)480,603
(C3xDic5):22(C2xC4) = C2xC30.Q8φ: C2xC4/C22C2 ⊆ Out C3xDic5480(C3xDic5):22(C2xC4)480,617
(C3xDic5):23(C2xC4) = C3xD5xC4:C4φ: C2xC4/C22C2 ⊆ Out C3xDic5240(C3xDic5):23(C2xC4)480,684
(C3xDic5):24(C2xC4) = C6xC10.D4φ: C2xC4/C22C2 ⊆ Out C3xDic5480(C3xDic5):24(C2xC4)480,716
(C3xDic5):25(C2xC4) = C2xC4xC3:F5φ: C2xC4/C22C2 ⊆ Out C3xDic5120(C3xDic5):25(C2xC4)480,1063
(C3xDic5):26(C2xC4) = C2xC60:C4φ: C2xC4/C22C2 ⊆ Out C3xDic5120(C3xDic5):26(C2xC4)480,1064
(C3xDic5):27(C2xC4) = F5xC2xC12φ: C2xC4/C22C2 ⊆ Out C3xDic5120(C3xDic5):27(C2xC4)480,1050
(C3xDic5):28(C2xC4) = C6xC4:F5φ: C2xC4/C22C2 ⊆ Out C3xDic5120(C3xDic5):28(C2xC4)480,1051
(C3xDic5):29(C2xC4) = D5xC4xC12φ: trivial image240(C3xDic5):29(C2xC4)480,664

Non-split extensions G=N.Q with N=C3xDic5 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
(C3xDic5).1(C2xC4) = S3xC8:D5φ: C2xC4/C2C22 ⊆ Out C3xDic51204(C3xDic5).1(C2xC4)480,321
(C3xDic5).2(C2xC4) = C40:D6φ: C2xC4/C2C22 ⊆ Out C3xDic51204(C3xDic5).2(C2xC4)480,322
(C3xDic5).3(C2xC4) = C40.55D6φ: C2xC4/C2C22 ⊆ Out C3xDic52404(C3xDic5).3(C2xC4)480,343
(C3xDic5).4(C2xC4) = C40.35D6φ: C2xC4/C2C22 ⊆ Out C3xDic52404(C3xDic5).4(C2xC4)480,344
(C3xDic5).5(C2xC4) = D20.3Dic3φ: C2xC4/C2C22 ⊆ Out C3xDic52404(C3xDic5).5(C2xC4)480,359
(C3xDic5).6(C2xC4) = D20.2Dic3φ: C2xC4/C2C22 ⊆ Out C3xDic52404(C3xDic5).6(C2xC4)480,360
(C3xDic5).7(C2xC4) = Dic3:5Dic10φ: C2xC4/C2C22 ⊆ Out C3xDic5480(C3xDic5).7(C2xC4)480,400
(C3xDic5).8(C2xC4) = Dic15:5Q8φ: C2xC4/C2C22 ⊆ Out C3xDic5480(C3xDic5).8(C2xC4)480,401
(C3xDic5).9(C2xC4) = Dic3xDic10φ: C2xC4/C2C22 ⊆ Out C3xDic5480(C3xDic5).9(C2xC4)480,406
(C3xDic5).10(C2xC4) = Dic15:6Q8φ: C2xC4/C2C22 ⊆ Out C3xDic5480(C3xDic5).10(C2xC4)480,407
(C3xDic5).11(C2xC4) = (S3xDic5):C4φ: C2xC4/C2C22 ⊆ Out C3xDic5240(C3xDic5).11(C2xC4)480,476
(C3xDic5).12(C2xC4) = D30.23(C2xC4)φ: C2xC4/C2C22 ⊆ Out C3xDic5240(C3xDic5).12(C2xC4)480,479
(C3xDic5).13(C2xC4) = F5xC3:C8φ: C2xC4/C2C22 ⊆ Out C3xDic51208(C3xDic5).13(C2xC4)480,223
(C3xDic5).14(C2xC4) = C30.C42φ: C2xC4/C2C22 ⊆ Out C3xDic51208(C3xDic5).14(C2xC4)480,224
(C3xDic5).15(C2xC4) = C30.3C42φ: C2xC4/C2C22 ⊆ Out C3xDic51208(C3xDic5).15(C2xC4)480,225
(C3xDic5).16(C2xC4) = C30.4C42φ: C2xC4/C2C22 ⊆ Out C3xDic51208(C3xDic5).16(C2xC4)480,226
(C3xDic5).17(C2xC4) = Dic3xC5:C8φ: C2xC4/C2C22 ⊆ Out C3xDic5480(C3xDic5).17(C2xC4)480,244
(C3xDic5).18(C2xC4) = C30.M4(2)φ: C2xC4/C2C22 ⊆ Out C3xDic5480(C3xDic5).18(C2xC4)480,245
(C3xDic5).19(C2xC4) = F5xDic6φ: C2xC4/C2C22 ⊆ Out C3xDic51208-(C3xDic5).19(C2xC4)480,982
(C3xDic5).20(C2xC4) = C4:F5:3S3φ: C2xC4/C2C22 ⊆ Out C3xDic51208(C3xDic5).20(C2xC4)480,983
(C3xDic5).21(C2xC4) = Dic6:5F5φ: C2xC4/C2C22 ⊆ Out C3xDic51208-(C3xDic5).21(C2xC4)480,984
(C3xDic5).22(C2xC4) = (C4xS3):F5φ: C2xC4/C2C22 ⊆ Out C3xDic51208(C3xDic5).22(C2xC4)480,985
(C3xDic5).23(C2xC4) = C2xS3xC5:C8φ: C2xC4/C2C22 ⊆ Out C3xDic5240(C3xDic5).23(C2xC4)480,1002
(C3xDic5).24(C2xC4) = C5:C8.D6φ: C2xC4/C2C22 ⊆ Out C3xDic52408(C3xDic5).24(C2xC4)480,1003
(C3xDic5).25(C2xC4) = S3xC22.F5φ: C2xC4/C2C22 ⊆ Out C3xDic51208-(C3xDic5).25(C2xC4)480,1004
(C3xDic5).26(C2xC4) = D15:C8:C2φ: C2xC4/C2C22 ⊆ Out C3xDic52408(C3xDic5).26(C2xC4)480,1005
(C3xDic5).27(C2xC4) = C2xD15:C8φ: C2xC4/C2C22 ⊆ Out C3xDic5240(C3xDic5).27(C2xC4)480,1006
(C3xDic5).28(C2xC4) = D15:2M4(2)φ: C2xC4/C2C22 ⊆ Out C3xDic51208+(C3xDic5).28(C2xC4)480,1007
(C3xDic5).29(C2xC4) = C2xD6.F5φ: C2xC4/C2C22 ⊆ Out C3xDic5240(C3xDic5).29(C2xC4)480,1008
(C3xDic5).30(C2xC4) = C2xDic3.F5φ: C2xC4/C2C22 ⊆ Out C3xDic5240(C3xDic5).30(C2xC4)480,1009
(C3xDic5).31(C2xC4) = Dic10.Dic3φ: C2xC4/C2C22 ⊆ Out C3xDic52408(C3xDic5).31(C2xC4)480,1066
(C3xDic5).32(C2xC4) = Q8xC3:F5φ: C2xC4/C2C22 ⊆ Out C3xDic51208(C3xDic5).32(C2xC4)480,1069
(C3xDic5).33(C2xC4) = C3xD4.F5φ: C2xC4/C2C22 ⊆ Out C3xDic52408(C3xDic5).33(C2xC4)480,1053
(C3xDic5).34(C2xC4) = C3xQ8xF5φ: C2xC4/C2C22 ⊆ Out C3xDic51208(C3xDic5).34(C2xC4)480,1056
(C3xDic5).35(C2xC4) = S3xC8xD5φ: C2xC4/C4C2 ⊆ Out C3xDic51204(C3xDic5).35(C2xC4)480,319
(C3xDic5).36(C2xC4) = D5xC8:S3φ: C2xC4/C4C2 ⊆ Out C3xDic51204(C3xDic5).36(C2xC4)480,320
(C3xDic5).37(C2xC4) = C40.54D6φ: C2xC4/C4C2 ⊆ Out C3xDic52404(C3xDic5).37(C2xC4)480,341
(C3xDic5).38(C2xC4) = C40.34D6φ: C2xC4/C4C2 ⊆ Out C3xDic52404(C3xDic5).38(C2xC4)480,342
(C3xDic5).39(C2xC4) = Dic5:5Dic6φ: C2xC4/C4C2 ⊆ Out C3xDic5480(C3xDic5).39(C2xC4)480,399
(C3xDic5).40(C2xC4) = D6.(C4xD5)φ: C2xC4/C4C2 ⊆ Out C3xDic5240(C3xDic5).40(C2xC4)480,474
(C3xDic5).41(C2xC4) = D30.C2:C4φ: C2xC4/C4C2 ⊆ Out C3xDic5240(C3xDic5).41(C2xC4)480,478
(C3xDic5).42(C2xC4) = C4xC15:Q8φ: C2xC4/C4C2 ⊆ Out C3xDic5480(C3xDic5).42(C2xC4)480,543
(C3xDic5).43(C2xC4) = C12xDic10φ: C2xC4/C4C2 ⊆ Out C3xDic5480(C3xDic5).43(C2xC4)480,661
(C3xDic5).44(C2xC4) = C3xDic5:3Q8φ: C2xC4/C4C2 ⊆ Out C3xDic5480(C3xDic5).44(C2xC4)480,680
(C3xDic5).45(C2xC4) = C3xD20.3C4φ: C2xC4/C4C2 ⊆ Out C3xDic52402(C3xDic5).45(C2xC4)480,694
(C3xDic5).46(C2xC4) = C3xD20.2C4φ: C2xC4/C4C2 ⊆ Out C3xDic52404(C3xDic5).46(C2xC4)480,700
(C3xDic5).47(C2xC4) = C8xC3:F5φ: C2xC4/C4C2 ⊆ Out C3xDic51204(C3xDic5).47(C2xC4)480,296
(C3xDic5).48(C2xC4) = C24:F5φ: C2xC4/C4C2 ⊆ Out C3xDic51204(C3xDic5).48(C2xC4)480,297
(C3xDic5).49(C2xC4) = C4xC15:C8φ: C2xC4/C4C2 ⊆ Out C3xDic5480(C3xDic5).49(C2xC4)480,305
(C3xDic5).50(C2xC4) = C30.11C42φ: C2xC4/C4C2 ⊆ Out C3xDic5480(C3xDic5).50(C2xC4)480,307
(C3xDic5).51(C2xC4) = F5xC24φ: C2xC4/C4C2 ⊆ Out C3xDic51204(C3xDic5).51(C2xC4)480,271
(C3xDic5).52(C2xC4) = C3xC8:F5φ: C2xC4/C4C2 ⊆ Out C3xDic51204(C3xDic5).52(C2xC4)480,272
(C3xDic5).53(C2xC4) = C12xC5:C8φ: C2xC4/C4C2 ⊆ Out C3xDic5480(C3xDic5).53(C2xC4)480,280
(C3xDic5).54(C2xC4) = C3xC10.C42φ: C2xC4/C4C2 ⊆ Out C3xDic5480(C3xDic5).54(C2xC4)480,282
(C3xDic5).55(C2xC4) = C2xD5xC3:C8φ: C2xC4/C22C2 ⊆ Out C3xDic5240(C3xDic5).55(C2xC4)480,357
(C3xDic5).56(C2xC4) = D5xC4.Dic3φ: C2xC4/C22C2 ⊆ Out C3xDic51204(C3xDic5).56(C2xC4)480,358
(C3xDic5).57(C2xC4) = C2xC20.32D6φ: C2xC4/C22C2 ⊆ Out C3xDic5240(C3xDic5).57(C2xC4)480,369
(C3xDic5).58(C2xC4) = (D5xC12):C4φ: C2xC4/C22C2 ⊆ Out C3xDic5240(C3xDic5).58(C2xC4)480,433
(C3xDic5).59(C2xC4) = (C4xD5):Dic3φ: C2xC4/C22C2 ⊆ Out C3xDic5240(C3xDic5).59(C2xC4)480,434
(C3xDic5).60(C2xC4) = (C6xDic5):7C4φ: C2xC4/C22C2 ⊆ Out C3xDic5240(C3xDic5).60(C2xC4)480,604
(C3xDic5).61(C2xC4) = C3xC42:D5φ: C2xC4/C22C2 ⊆ Out C3xDic5240(C3xDic5).61(C2xC4)480,665
(C3xDic5).62(C2xC4) = C3xC23.11D10φ: C2xC4/C22C2 ⊆ Out C3xDic5240(C3xDic5).62(C2xC4)480,670
(C3xDic5).63(C2xC4) = C6xC8:D5φ: C2xC4/C22C2 ⊆ Out C3xDic5240(C3xDic5).63(C2xC4)480,693
(C3xDic5).64(C2xC4) = C2xC60.C4φ: C2xC4/C22C2 ⊆ Out C3xDic5240(C3xDic5).64(C2xC4)480,1060
(C3xDic5).65(C2xC4) = C2xC12.F5φ: C2xC4/C22C2 ⊆ Out C3xDic5240(C3xDic5).65(C2xC4)480,1061
(C3xDic5).66(C2xC4) = C60.59(C2xC4)φ: C2xC4/C22C2 ⊆ Out C3xDic51204(C3xDic5).66(C2xC4)480,1062
(C3xDic5).67(C2xC4) = (C2xC12):6F5φ: C2xC4/C22C2 ⊆ Out C3xDic51204(C3xDic5).67(C2xC4)480,1065
(C3xDic5).68(C2xC4) = C22xC15:C8φ: C2xC4/C22C2 ⊆ Out C3xDic5480(C3xDic5).68(C2xC4)480,1070
(C3xDic5).69(C2xC4) = C2xC15:8M4(2)φ: C2xC4/C22C2 ⊆ Out C3xDic5240(C3xDic5).69(C2xC4)480,1071
(C3xDic5).70(C2xC4) = C6xD5:C8φ: C2xC4/C22C2 ⊆ Out C3xDic5240(C3xDic5).70(C2xC4)480,1047
(C3xDic5).71(C2xC4) = C6xC4.F5φ: C2xC4/C22C2 ⊆ Out C3xDic5240(C3xDic5).71(C2xC4)480,1048
(C3xDic5).72(C2xC4) = C3xD5:M4(2)φ: C2xC4/C22C2 ⊆ Out C3xDic51204(C3xDic5).72(C2xC4)480,1049
(C3xDic5).73(C2xC4) = C3xD10.C23φ: C2xC4/C22C2 ⊆ Out C3xDic51204(C3xDic5).73(C2xC4)480,1052
(C3xDic5).74(C2xC4) = C2xC6xC5:C8φ: C2xC4/C22C2 ⊆ Out C3xDic5480(C3xDic5).74(C2xC4)480,1057
(C3xDic5).75(C2xC4) = C6xC22.F5φ: C2xC4/C22C2 ⊆ Out C3xDic5240(C3xDic5).75(C2xC4)480,1058
(C3xDic5).76(C2xC4) = C3xC4:C4:7D5φ: trivial image240(C3xDic5).76(C2xC4)480,685
(C3xDic5).77(C2xC4) = D5xC2xC24φ: trivial image240(C3xDic5).77(C2xC4)480,692
(C3xDic5).78(C2xC4) = C3xD5xM4(2)φ: trivial image1204(C3xDic5).78(C2xC4)480,699

׿
x
:
Z
F
o
wr
Q
<