extension | φ:Q→Out N | d | ρ | Label | ID |
(C3xDic5).1(C2xC4) = S3xC8:D5 | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 120 | 4 | (C3xDic5).1(C2xC4) | 480,321 |
(C3xDic5).2(C2xC4) = C40:D6 | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 120 | 4 | (C3xDic5).2(C2xC4) | 480,322 |
(C3xDic5).3(C2xC4) = C40.55D6 | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 240 | 4 | (C3xDic5).3(C2xC4) | 480,343 |
(C3xDic5).4(C2xC4) = C40.35D6 | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 240 | 4 | (C3xDic5).4(C2xC4) | 480,344 |
(C3xDic5).5(C2xC4) = D20.3Dic3 | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 240 | 4 | (C3xDic5).5(C2xC4) | 480,359 |
(C3xDic5).6(C2xC4) = D20.2Dic3 | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 240 | 4 | (C3xDic5).6(C2xC4) | 480,360 |
(C3xDic5).7(C2xC4) = Dic3:5Dic10 | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 480 | | (C3xDic5).7(C2xC4) | 480,400 |
(C3xDic5).8(C2xC4) = Dic15:5Q8 | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 480 | | (C3xDic5).8(C2xC4) | 480,401 |
(C3xDic5).9(C2xC4) = Dic3xDic10 | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 480 | | (C3xDic5).9(C2xC4) | 480,406 |
(C3xDic5).10(C2xC4) = Dic15:6Q8 | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 480 | | (C3xDic5).10(C2xC4) | 480,407 |
(C3xDic5).11(C2xC4) = (S3xDic5):C4 | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 240 | | (C3xDic5).11(C2xC4) | 480,476 |
(C3xDic5).12(C2xC4) = D30.23(C2xC4) | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 240 | | (C3xDic5).12(C2xC4) | 480,479 |
(C3xDic5).13(C2xC4) = F5xC3:C8 | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 120 | 8 | (C3xDic5).13(C2xC4) | 480,223 |
(C3xDic5).14(C2xC4) = C30.C42 | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 120 | 8 | (C3xDic5).14(C2xC4) | 480,224 |
(C3xDic5).15(C2xC4) = C30.3C42 | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 120 | 8 | (C3xDic5).15(C2xC4) | 480,225 |
(C3xDic5).16(C2xC4) = C30.4C42 | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 120 | 8 | (C3xDic5).16(C2xC4) | 480,226 |
(C3xDic5).17(C2xC4) = Dic3xC5:C8 | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 480 | | (C3xDic5).17(C2xC4) | 480,244 |
(C3xDic5).18(C2xC4) = C30.M4(2) | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 480 | | (C3xDic5).18(C2xC4) | 480,245 |
(C3xDic5).19(C2xC4) = F5xDic6 | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 120 | 8- | (C3xDic5).19(C2xC4) | 480,982 |
(C3xDic5).20(C2xC4) = C4:F5:3S3 | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 120 | 8 | (C3xDic5).20(C2xC4) | 480,983 |
(C3xDic5).21(C2xC4) = Dic6:5F5 | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 120 | 8- | (C3xDic5).21(C2xC4) | 480,984 |
(C3xDic5).22(C2xC4) = (C4xS3):F5 | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 120 | 8 | (C3xDic5).22(C2xC4) | 480,985 |
(C3xDic5).23(C2xC4) = C2xS3xC5:C8 | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 240 | | (C3xDic5).23(C2xC4) | 480,1002 |
(C3xDic5).24(C2xC4) = C5:C8.D6 | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 240 | 8 | (C3xDic5).24(C2xC4) | 480,1003 |
(C3xDic5).25(C2xC4) = S3xC22.F5 | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 120 | 8- | (C3xDic5).25(C2xC4) | 480,1004 |
(C3xDic5).26(C2xC4) = D15:C8:C2 | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 240 | 8 | (C3xDic5).26(C2xC4) | 480,1005 |
(C3xDic5).27(C2xC4) = C2xD15:C8 | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 240 | | (C3xDic5).27(C2xC4) | 480,1006 |
(C3xDic5).28(C2xC4) = D15:2M4(2) | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 120 | 8+ | (C3xDic5).28(C2xC4) | 480,1007 |
(C3xDic5).29(C2xC4) = C2xD6.F5 | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 240 | | (C3xDic5).29(C2xC4) | 480,1008 |
(C3xDic5).30(C2xC4) = C2xDic3.F5 | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 240 | | (C3xDic5).30(C2xC4) | 480,1009 |
(C3xDic5).31(C2xC4) = Dic10.Dic3 | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 240 | 8 | (C3xDic5).31(C2xC4) | 480,1066 |
(C3xDic5).32(C2xC4) = Q8xC3:F5 | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 120 | 8 | (C3xDic5).32(C2xC4) | 480,1069 |
(C3xDic5).33(C2xC4) = C3xD4.F5 | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 240 | 8 | (C3xDic5).33(C2xC4) | 480,1053 |
(C3xDic5).34(C2xC4) = C3xQ8xF5 | φ: C2xC4/C2 → C22 ⊆ Out C3xDic5 | 120 | 8 | (C3xDic5).34(C2xC4) | 480,1056 |
(C3xDic5).35(C2xC4) = S3xC8xD5 | φ: C2xC4/C4 → C2 ⊆ Out C3xDic5 | 120 | 4 | (C3xDic5).35(C2xC4) | 480,319 |
(C3xDic5).36(C2xC4) = D5xC8:S3 | φ: C2xC4/C4 → C2 ⊆ Out C3xDic5 | 120 | 4 | (C3xDic5).36(C2xC4) | 480,320 |
(C3xDic5).37(C2xC4) = C40.54D6 | φ: C2xC4/C4 → C2 ⊆ Out C3xDic5 | 240 | 4 | (C3xDic5).37(C2xC4) | 480,341 |
(C3xDic5).38(C2xC4) = C40.34D6 | φ: C2xC4/C4 → C2 ⊆ Out C3xDic5 | 240 | 4 | (C3xDic5).38(C2xC4) | 480,342 |
(C3xDic5).39(C2xC4) = Dic5:5Dic6 | φ: C2xC4/C4 → C2 ⊆ Out C3xDic5 | 480 | | (C3xDic5).39(C2xC4) | 480,399 |
(C3xDic5).40(C2xC4) = D6.(C4xD5) | φ: C2xC4/C4 → C2 ⊆ Out C3xDic5 | 240 | | (C3xDic5).40(C2xC4) | 480,474 |
(C3xDic5).41(C2xC4) = D30.C2:C4 | φ: C2xC4/C4 → C2 ⊆ Out C3xDic5 | 240 | | (C3xDic5).41(C2xC4) | 480,478 |
(C3xDic5).42(C2xC4) = C4xC15:Q8 | φ: C2xC4/C4 → C2 ⊆ Out C3xDic5 | 480 | | (C3xDic5).42(C2xC4) | 480,543 |
(C3xDic5).43(C2xC4) = C12xDic10 | φ: C2xC4/C4 → C2 ⊆ Out C3xDic5 | 480 | | (C3xDic5).43(C2xC4) | 480,661 |
(C3xDic5).44(C2xC4) = C3xDic5:3Q8 | φ: C2xC4/C4 → C2 ⊆ Out C3xDic5 | 480 | | (C3xDic5).44(C2xC4) | 480,680 |
(C3xDic5).45(C2xC4) = C3xD20.3C4 | φ: C2xC4/C4 → C2 ⊆ Out C3xDic5 | 240 | 2 | (C3xDic5).45(C2xC4) | 480,694 |
(C3xDic5).46(C2xC4) = C3xD20.2C4 | φ: C2xC4/C4 → C2 ⊆ Out C3xDic5 | 240 | 4 | (C3xDic5).46(C2xC4) | 480,700 |
(C3xDic5).47(C2xC4) = C8xC3:F5 | φ: C2xC4/C4 → C2 ⊆ Out C3xDic5 | 120 | 4 | (C3xDic5).47(C2xC4) | 480,296 |
(C3xDic5).48(C2xC4) = C24:F5 | φ: C2xC4/C4 → C2 ⊆ Out C3xDic5 | 120 | 4 | (C3xDic5).48(C2xC4) | 480,297 |
(C3xDic5).49(C2xC4) = C4xC15:C8 | φ: C2xC4/C4 → C2 ⊆ Out C3xDic5 | 480 | | (C3xDic5).49(C2xC4) | 480,305 |
(C3xDic5).50(C2xC4) = C30.11C42 | φ: C2xC4/C4 → C2 ⊆ Out C3xDic5 | 480 | | (C3xDic5).50(C2xC4) | 480,307 |
(C3xDic5).51(C2xC4) = F5xC24 | φ: C2xC4/C4 → C2 ⊆ Out C3xDic5 | 120 | 4 | (C3xDic5).51(C2xC4) | 480,271 |
(C3xDic5).52(C2xC4) = C3xC8:F5 | φ: C2xC4/C4 → C2 ⊆ Out C3xDic5 | 120 | 4 | (C3xDic5).52(C2xC4) | 480,272 |
(C3xDic5).53(C2xC4) = C12xC5:C8 | φ: C2xC4/C4 → C2 ⊆ Out C3xDic5 | 480 | | (C3xDic5).53(C2xC4) | 480,280 |
(C3xDic5).54(C2xC4) = C3xC10.C42 | φ: C2xC4/C4 → C2 ⊆ Out C3xDic5 | 480 | | (C3xDic5).54(C2xC4) | 480,282 |
(C3xDic5).55(C2xC4) = C2xD5xC3:C8 | φ: C2xC4/C22 → C2 ⊆ Out C3xDic5 | 240 | | (C3xDic5).55(C2xC4) | 480,357 |
(C3xDic5).56(C2xC4) = D5xC4.Dic3 | φ: C2xC4/C22 → C2 ⊆ Out C3xDic5 | 120 | 4 | (C3xDic5).56(C2xC4) | 480,358 |
(C3xDic5).57(C2xC4) = C2xC20.32D6 | φ: C2xC4/C22 → C2 ⊆ Out C3xDic5 | 240 | | (C3xDic5).57(C2xC4) | 480,369 |
(C3xDic5).58(C2xC4) = (D5xC12):C4 | φ: C2xC4/C22 → C2 ⊆ Out C3xDic5 | 240 | | (C3xDic5).58(C2xC4) | 480,433 |
(C3xDic5).59(C2xC4) = (C4xD5):Dic3 | φ: C2xC4/C22 → C2 ⊆ Out C3xDic5 | 240 | | (C3xDic5).59(C2xC4) | 480,434 |
(C3xDic5).60(C2xC4) = (C6xDic5):7C4 | φ: C2xC4/C22 → C2 ⊆ Out C3xDic5 | 240 | | (C3xDic5).60(C2xC4) | 480,604 |
(C3xDic5).61(C2xC4) = C3xC42:D5 | φ: C2xC4/C22 → C2 ⊆ Out C3xDic5 | 240 | | (C3xDic5).61(C2xC4) | 480,665 |
(C3xDic5).62(C2xC4) = C3xC23.11D10 | φ: C2xC4/C22 → C2 ⊆ Out C3xDic5 | 240 | | (C3xDic5).62(C2xC4) | 480,670 |
(C3xDic5).63(C2xC4) = C6xC8:D5 | φ: C2xC4/C22 → C2 ⊆ Out C3xDic5 | 240 | | (C3xDic5).63(C2xC4) | 480,693 |
(C3xDic5).64(C2xC4) = C2xC60.C4 | φ: C2xC4/C22 → C2 ⊆ Out C3xDic5 | 240 | | (C3xDic5).64(C2xC4) | 480,1060 |
(C3xDic5).65(C2xC4) = C2xC12.F5 | φ: C2xC4/C22 → C2 ⊆ Out C3xDic5 | 240 | | (C3xDic5).65(C2xC4) | 480,1061 |
(C3xDic5).66(C2xC4) = C60.59(C2xC4) | φ: C2xC4/C22 → C2 ⊆ Out C3xDic5 | 120 | 4 | (C3xDic5).66(C2xC4) | 480,1062 |
(C3xDic5).67(C2xC4) = (C2xC12):6F5 | φ: C2xC4/C22 → C2 ⊆ Out C3xDic5 | 120 | 4 | (C3xDic5).67(C2xC4) | 480,1065 |
(C3xDic5).68(C2xC4) = C22xC15:C8 | φ: C2xC4/C22 → C2 ⊆ Out C3xDic5 | 480 | | (C3xDic5).68(C2xC4) | 480,1070 |
(C3xDic5).69(C2xC4) = C2xC15:8M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C3xDic5 | 240 | | (C3xDic5).69(C2xC4) | 480,1071 |
(C3xDic5).70(C2xC4) = C6xD5:C8 | φ: C2xC4/C22 → C2 ⊆ Out C3xDic5 | 240 | | (C3xDic5).70(C2xC4) | 480,1047 |
(C3xDic5).71(C2xC4) = C6xC4.F5 | φ: C2xC4/C22 → C2 ⊆ Out C3xDic5 | 240 | | (C3xDic5).71(C2xC4) | 480,1048 |
(C3xDic5).72(C2xC4) = C3xD5:M4(2) | φ: C2xC4/C22 → C2 ⊆ Out C3xDic5 | 120 | 4 | (C3xDic5).72(C2xC4) | 480,1049 |
(C3xDic5).73(C2xC4) = C3xD10.C23 | φ: C2xC4/C22 → C2 ⊆ Out C3xDic5 | 120 | 4 | (C3xDic5).73(C2xC4) | 480,1052 |
(C3xDic5).74(C2xC4) = C2xC6xC5:C8 | φ: C2xC4/C22 → C2 ⊆ Out C3xDic5 | 480 | | (C3xDic5).74(C2xC4) | 480,1057 |
(C3xDic5).75(C2xC4) = C6xC22.F5 | φ: C2xC4/C22 → C2 ⊆ Out C3xDic5 | 240 | | (C3xDic5).75(C2xC4) | 480,1058 |
(C3xDic5).76(C2xC4) = C3xC4:C4:7D5 | φ: trivial image | 240 | | (C3xDic5).76(C2xC4) | 480,685 |
(C3xDic5).77(C2xC4) = D5xC2xC24 | φ: trivial image | 240 | | (C3xDic5).77(C2xC4) | 480,692 |
(C3xDic5).78(C2xC4) = C3xD5xM4(2) | φ: trivial image | 120 | 4 | (C3xDic5).78(C2xC4) | 480,699 |