Extensions 1→N→G→Q→1 with N=C8 and Q=D4

Direct product G=N×Q with N=C8 and Q=D4
dρLabelID
C8×D432C8xD464,115

Semidirect products G=N:Q with N=C8 and Q=D4
extensionφ:Q→Aut NdρLabelID
C81D4 = C8⋊D4φ: D4/C2C22 ⊆ Aut C832C8:1D464,149
C82D4 = C82D4φ: D4/C2C22 ⊆ Aut C832C8:2D464,150
C83D4 = C83D4φ: D4/C2C22 ⊆ Aut C832C8:3D464,177
C84D4 = C84D4φ: D4/C4C2 ⊆ Aut C832C8:4D464,174
C85D4 = C85D4φ: D4/C4C2 ⊆ Aut C832C8:5D464,173
C86D4 = C86D4φ: D4/C4C2 ⊆ Aut C832C8:6D464,117
C87D4 = C87D4φ: D4/C22C2 ⊆ Aut C832C8:7D464,147
C88D4 = C88D4φ: D4/C22C2 ⊆ Aut C832C8:8D464,146
C89D4 = C89D4φ: D4/C22C2 ⊆ Aut C832C8:9D464,116

Non-split extensions G=N.Q with N=C8 and Q=D4
extensionφ:Q→Aut NdρLabelID
C8.1D4 = C8.D4φ: D4/C2C22 ⊆ Aut C832C8.1D464,151
C8.2D4 = C8.2D4φ: D4/C2C22 ⊆ Aut C832C8.2D464,178
C8.3D4 = C16⋊C22φ: D4/C2C22 ⊆ Aut C8164+C8.3D464,190
C8.4D4 = Q32⋊C2φ: D4/C2C22 ⊆ Aut C8324-C8.4D464,191
C8.5D4 = D32φ: D4/C4C2 ⊆ Aut C8322+C8.5D464,52
C8.6D4 = SD64φ: D4/C4C2 ⊆ Aut C8322C8.6D464,53
C8.7D4 = Q64φ: D4/C4C2 ⊆ Aut C8642-C8.7D464,54
C8.8D4 = C4⋊Q16φ: D4/C4C2 ⊆ Aut C864C8.8D464,175
C8.9D4 = C2×D16φ: D4/C4C2 ⊆ Aut C832C8.9D464,186
C8.10D4 = C2×SD32φ: D4/C4C2 ⊆ Aut C832C8.10D464,187
C8.11D4 = C2×Q32φ: D4/C4C2 ⊆ Aut C864C8.11D464,188
C8.12D4 = C8.12D4φ: D4/C4C2 ⊆ Aut C832C8.12D464,176
C8.13D4 = C4○D16φ: D4/C4C2 ⊆ Aut C8322C8.13D464,189
C8.14D4 = C2.D16φ: D4/C22C2 ⊆ Aut C832C8.14D464,38
C8.15D4 = C2.Q32φ: D4/C22C2 ⊆ Aut C864C8.15D464,39
C8.16D4 = M5(2)⋊C2φ: D4/C22C2 ⊆ Aut C8164+C8.16D464,42
C8.17D4 = C8.17D4φ: D4/C22C2 ⊆ Aut C8324-C8.17D464,43
C8.18D4 = C8.18D4φ: D4/C22C2 ⊆ Aut C832C8.18D464,148
C8.19D4 = D4.4D4φ: D4/C22C2 ⊆ Aut C8164+C8.19D464,153
C8.20D4 = D4.5D4φ: D4/C22C2 ⊆ Aut C8324-C8.20D464,154
C8.21D4 = D8.C4φ: D4/C22C2 ⊆ Aut C8322C8.21D464,40
C8.22D4 = D82C4φ: D4/C22C2 ⊆ Aut C8164C8.22D464,41
C8.23D4 = D4.3D4φ: D4/C22C2 ⊆ Aut C8164C8.23D464,152
C8.24D4 = C23.C8φ: D4/C22C2 ⊆ Aut C8164C8.24D464,30
C8.25D4 = D4.C8φ: D4/C22C2 ⊆ Aut C8322C8.25D464,31
C8.26D4 = C8.26D4φ: D4/C22C2 ⊆ Aut C8164C8.26D464,125
C8.27D4 = C22⋊C16central extension (φ=1)32C8.27D464,29
C8.28D4 = C4⋊C16central extension (φ=1)64C8.28D464,44
C8.29D4 = C8.C8central extension (φ=1)162C8.29D464,45
C8.30D4 = C8○D8central extension (φ=1)162C8.30D464,124

׿
×
𝔽