extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1(C3⋊D4) = C3⋊D16 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C4 | 48 | 4+ | C4.1(C3:D4) | 96,33 |
C4.2(C3⋊D4) = D8.S3 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C4 | 48 | 4- | C4.2(C3:D4) | 96,34 |
C4.3(C3⋊D4) = C8.6D6 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C4 | 48 | 4+ | C4.3(C3:D4) | 96,35 |
C4.4(C3⋊D4) = C3⋊Q32 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C4 | 96 | 4- | C4.4(C3:D4) | 96,36 |
C4.5(C3⋊D4) = C2×D4⋊S3 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C4 | 48 | | C4.5(C3:D4) | 96,138 |
C4.6(C3⋊D4) = C2×D4.S3 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C4 | 48 | | C4.6(C3:D4) | 96,140 |
C4.7(C3⋊D4) = C23.12D6 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C4 | 48 | | C4.7(C3:D4) | 96,143 |
C4.8(C3⋊D4) = C2×Q8⋊2S3 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C4 | 48 | | C4.8(C3:D4) | 96,148 |
C4.9(C3⋊D4) = C2×C3⋊Q16 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C4 | 96 | | C4.9(C3:D4) | 96,150 |
C4.10(C3⋊D4) = Dic3⋊Q8 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C4 | 96 | | C4.10(C3:D4) | 96,151 |
C4.11(C3⋊D4) = C12.23D4 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C4 | 48 | | C4.11(C3:D4) | 96,154 |
C4.12(C3⋊D4) = D4⋊Dic3 | φ: C3⋊D4/D6 → C2 ⊆ Aut C4 | 48 | | C4.12(C3:D4) | 96,39 |
C4.13(C3⋊D4) = C12.D4 | φ: C3⋊D4/D6 → C2 ⊆ Aut C4 | 24 | 4 | C4.13(C3:D4) | 96,40 |
C4.14(C3⋊D4) = Q8⋊2Dic3 | φ: C3⋊D4/D6 → C2 ⊆ Aut C4 | 96 | | C4.14(C3:D4) | 96,42 |
C4.15(C3⋊D4) = C12.10D4 | φ: C3⋊D4/D6 → C2 ⊆ Aut C4 | 48 | 4 | C4.15(C3:D4) | 96,43 |
C4.16(C3⋊D4) = D12⋊6C22 | φ: C3⋊D4/D6 → C2 ⊆ Aut C4 | 24 | 4 | C4.16(C3:D4) | 96,139 |
C4.17(C3⋊D4) = Q8.11D6 | φ: C3⋊D4/D6 → C2 ⊆ Aut C4 | 48 | 4 | C4.17(C3:D4) | 96,149 |
C4.18(C3⋊D4) = D6⋊3Q8 | φ: C3⋊D4/D6 → C2 ⊆ Aut C4 | 48 | | C4.18(C3:D4) | 96,153 |
C4.19(C3⋊D4) = C2.Dic12 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C4 | 96 | | C4.19(C3:D4) | 96,23 |
C4.20(C3⋊D4) = C2.D24 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C4 | 48 | | C4.20(C3:D4) | 96,28 |
C4.21(C3⋊D4) = C12.46D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C4 | 24 | 4+ | C4.21(C3:D4) | 96,30 |
C4.22(C3⋊D4) = C12.47D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C4 | 48 | 4- | C4.22(C3:D4) | 96,31 |
C4.23(C3⋊D4) = C12.48D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C4 | 48 | | C4.23(C3:D4) | 96,131 |
C4.24(C3⋊D4) = D4⋊D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C4 | 24 | 4+ | C4.24(C3:D4) | 96,156 |
C4.25(C3⋊D4) = Q8.14D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C4 | 48 | 4- | C4.25(C3:D4) | 96,158 |
C4.26(C3⋊D4) = Dic3⋊C8 | central extension (φ=1) | 96 | | C4.26(C3:D4) | 96,21 |
C4.27(C3⋊D4) = D6⋊C8 | central extension (φ=1) | 48 | | C4.27(C3:D4) | 96,27 |
C4.28(C3⋊D4) = C12.53D4 | central extension (φ=1) | 48 | 4 | C4.28(C3:D4) | 96,29 |
C4.29(C3⋊D4) = D12⋊C4 | central extension (φ=1) | 24 | 4 | C4.29(C3:D4) | 96,32 |
C4.30(C3⋊D4) = C12.55D4 | central extension (φ=1) | 48 | | C4.30(C3:D4) | 96,37 |
C4.31(C3⋊D4) = Q8⋊3Dic3 | central extension (φ=1) | 24 | 4 | C4.31(C3:D4) | 96,44 |
C4.32(C3⋊D4) = Q8.13D6 | central extension (φ=1) | 48 | 4 | C4.32(C3:D4) | 96,157 |