Extensions 1→N→G→Q→1 with N=C6 and Q=D4

Direct product G=N×Q with N=C6 and Q=D4
dρLabelID
C6×D424C6xD448,45

Semidirect products G=N:Q with N=C6 and Q=D4
extensionφ:Q→Aut NdρLabelID
C61D4 = C2×D12φ: D4/C4C2 ⊆ Aut C624C6:1D448,36
C62D4 = C2×C3⋊D4φ: D4/C22C2 ⊆ Aut C624C6:2D448,43

Non-split extensions G=N.Q with N=C6 and Q=D4
extensionφ:Q→Aut NdρLabelID
C6.1D4 = C24⋊C2φ: D4/C4C2 ⊆ Aut C6242C6.1D448,6
C6.2D4 = D24φ: D4/C4C2 ⊆ Aut C6242+C6.2D448,7
C6.3D4 = Dic12φ: D4/C4C2 ⊆ Aut C6482-C6.3D448,8
C6.4D4 = C4⋊Dic3φ: D4/C4C2 ⊆ Aut C648C6.4D448,13
C6.5D4 = Dic3⋊C4φ: D4/C22C2 ⊆ Aut C648C6.5D448,12
C6.6D4 = D6⋊C4φ: D4/C22C2 ⊆ Aut C624C6.6D448,14
C6.7D4 = D4⋊S3φ: D4/C22C2 ⊆ Aut C6244+C6.7D448,15
C6.8D4 = D4.S3φ: D4/C22C2 ⊆ Aut C6244-C6.8D448,16
C6.9D4 = Q82S3φ: D4/C22C2 ⊆ Aut C6244+C6.9D448,17
C6.10D4 = C3⋊Q16φ: D4/C22C2 ⊆ Aut C6484-C6.10D448,18
C6.11D4 = C6.D4φ: D4/C22C2 ⊆ Aut C624C6.11D448,19
C6.12D4 = C3×C22⋊C4central extension (φ=1)24C6.12D448,21
C6.13D4 = C3×C4⋊C4central extension (φ=1)48C6.13D448,22
C6.14D4 = C3×D8central extension (φ=1)242C6.14D448,25
C6.15D4 = C3×SD16central extension (φ=1)242C6.15D448,26
C6.16D4 = C3×Q16central extension (φ=1)482C6.16D448,27

׿
×
𝔽