Copied to
clipboard

G = Dic3:4D4order 96 = 25·3

1st semidirect product of Dic3 and D4 acting through Inn(Dic3)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic3:4D4, C23.19D6, C3:D4:C4, C3:2(C4xD4), D6:2(C2xC4), C2.2(S3xD4), D6:C4:10C2, C22:C4:7S3, C22:2(C4xS3), C6.18(C2xD4), (C2xC4).28D6, Dic3:C4:9C2, Dic3:1(C2xC4), C6.7(C22xC4), (C4xDic3):11C2, C6.22(C4oD4), (C2xC6).22C23, C2.2(D4:2S3), (C2xC12).51C22, Dic3o2(C22:C4), (C22xDic3):1C2, C22.14(C22xS3), (C22xC6).11C22, (C22xS3).16C22, (C2xDic3).47C22, (S3xC2xC4):9C2, C2.9(S3xC2xC4), (C2xC6):2(C2xC4), (C3xC22:C4):9C2, (C2xC3:D4).2C2, C22:C4o(C2xDic3), SmallGroup(96,88)

Series: Derived Chief Lower central Upper central

C1C6 — Dic3:4D4
C1C3C6C2xC6C22xS3C2xC3:D4 — Dic3:4D4
C3C6 — Dic3:4D4
C1C22C22:C4

Generators and relations for Dic3:4D4
 G = < a,b,c,d | a6=c4=d2=1, b2=a3, bab-1=cac-1=a-1, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 202 in 94 conjugacy classes, 43 normal (29 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C2xC4, C2xC4, D4, C23, C23, Dic3, Dic3, C12, D6, D6, C2xC6, C2xC6, C2xC6, C42, C22:C4, C22:C4, C4:C4, C22xC4, C2xD4, C4xS3, C2xDic3, C2xDic3, C3:D4, C2xC12, C22xS3, C22xC6, C4xD4, C4xDic3, Dic3:C4, D6:C4, C3xC22:C4, S3xC2xC4, C22xDic3, C2xC3:D4, Dic3:4D4
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, C23, D6, C22xC4, C2xD4, C4oD4, C4xS3, C22xS3, C4xD4, S3xC2xC4, S3xD4, D4:2S3, Dic3:4D4

Character table of Dic3:4D4

 class 12A2B2C2D2E2F2G34A4B4C4D4E4F4G4H4I4J4K4L6A6B6C6D6E12A12B12C12D
 size 111122662222233336666222444444
ρ1111111111111111111111111111111    trivial
ρ21111-1-1-1-11-11-111111-11-11111-1-1-1-111    linear of order 2
ρ3111111-1-11-1-1-1-111111-11-111111-1-1-1-1    linear of order 2
ρ41111-1-11111-11-11111-1-1-1-1111-1-111-1-1    linear of order 2
ρ5111111111-1-1-1-1-1-1-1-1-11-1111111-1-1-1-1    linear of order 2
ρ61111-1-1-1-111-11-1-1-1-1-11111111-1-111-1-1    linear of order 2
ρ7111111-1-111111-1-1-1-1-1-1-1-1111111111    linear of order 2
ρ81111-1-1111-11-11-1-1-1-11-11-1111-1-1-1-111    linear of order 2
ρ911-1-11-11-11-iii-i-i-iii-i-1i1-1-111-1-iii-i    linear of order 4
ρ1011-1-1-11-111ii-i-i-i-iiii-1-i1-1-11-11i-ii-i    linear of order 4
ρ1111-1-1-111-11-i-iii-i-iiii1-i-1-1-11-11-ii-ii    linear of order 4
ρ1211-1-11-1-111i-i-ii-i-iii-i1i-1-1-111-1i-i-ii    linear of order 4
ρ1311-1-11-11-11i-i-iiii-i-ii-1-i1-1-111-1i-i-ii    linear of order 4
ρ1411-1-1-11-111-i-iiiii-i-i-i-1i1-1-11-11-ii-ii    linear of order 4
ρ1511-1-1-111-11ii-i-iii-i-i-i1i-1-1-11-11i-ii-i    linear of order 4
ρ1611-1-11-1-111-iii-iii-i-ii1-i-1-1-111-1-iii-i    linear of order 4
ρ172222-2-200-1-22-2200000000-1-1-11111-1-1    orthogonal lifted from D6
ρ182222-2-200-12-22-200000000-1-1-111-1-111    orthogonal lifted from D6
ρ192-22-2000020000-22-220000-22-2000000    orthogonal lifted from D4
ρ202-22-20000200002-22-20000-22-2000000    orthogonal lifted from D4
ρ2122222200-1222200000000-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ2222222200-1-2-2-2-200000000-1-1-1-1-11111    orthogonal lifted from D6
ρ2322-2-22-200-12i-2i-2i2i0000000011-1-11-iii-i    complex lifted from C4xS3
ρ2422-2-22-200-1-2i2i2i-2i0000000011-1-11i-i-ii    complex lifted from C4xS3
ρ2522-2-2-2200-12i2i-2i-2i0000000011-11-1-ii-ii    complex lifted from C4xS3
ρ2622-2-2-2200-1-2i-2i2i2i0000000011-11-1i-ii-i    complex lifted from C4xS3
ρ272-2-220000200002i-2i-2i2i00002-2-2000000    complex lifted from C4oD4
ρ282-2-22000020000-2i2i2i-2i00002-2-2000000    complex lifted from C4oD4
ρ294-44-40000-20000000000002-22000000    orthogonal lifted from S3xD4
ρ304-4-440000-2000000000000-222000000    symplectic lifted from D4:2S3, Schur index 2

Smallest permutation representation of Dic3:4D4
On 48 points
Generators in S48
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 20 4 23)(2 19 5 22)(3 24 6 21)(7 38 10 41)(8 37 11 40)(9 42 12 39)(13 25 16 28)(14 30 17 27)(15 29 18 26)(31 45 34 48)(32 44 35 47)(33 43 36 46)
(1 37 16 35)(2 42 17 34)(3 41 18 33)(4 40 13 32)(5 39 14 31)(6 38 15 36)(7 26 43 24)(8 25 44 23)(9 30 45 22)(10 29 46 21)(11 28 47 20)(12 27 48 19)
(1 32)(2 33)(3 34)(4 35)(5 36)(6 31)(7 27)(8 28)(9 29)(10 30)(11 25)(12 26)(13 37)(14 38)(15 39)(16 40)(17 41)(18 42)(19 43)(20 44)(21 45)(22 46)(23 47)(24 48)

G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,20,4,23)(2,19,5,22)(3,24,6,21)(7,38,10,41)(8,37,11,40)(9,42,12,39)(13,25,16,28)(14,30,17,27)(15,29,18,26)(31,45,34,48)(32,44,35,47)(33,43,36,46), (1,37,16,35)(2,42,17,34)(3,41,18,33)(4,40,13,32)(5,39,14,31)(6,38,15,36)(7,26,43,24)(8,25,44,23)(9,30,45,22)(10,29,46,21)(11,28,47,20)(12,27,48,19), (1,32)(2,33)(3,34)(4,35)(5,36)(6,31)(7,27)(8,28)(9,29)(10,30)(11,25)(12,26)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,20,4,23)(2,19,5,22)(3,24,6,21)(7,38,10,41)(8,37,11,40)(9,42,12,39)(13,25,16,28)(14,30,17,27)(15,29,18,26)(31,45,34,48)(32,44,35,47)(33,43,36,46), (1,37,16,35)(2,42,17,34)(3,41,18,33)(4,40,13,32)(5,39,14,31)(6,38,15,36)(7,26,43,24)(8,25,44,23)(9,30,45,22)(10,29,46,21)(11,28,47,20)(12,27,48,19), (1,32)(2,33)(3,34)(4,35)(5,36)(6,31)(7,27)(8,28)(9,29)(10,30)(11,25)(12,26)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,20,4,23),(2,19,5,22),(3,24,6,21),(7,38,10,41),(8,37,11,40),(9,42,12,39),(13,25,16,28),(14,30,17,27),(15,29,18,26),(31,45,34,48),(32,44,35,47),(33,43,36,46)], [(1,37,16,35),(2,42,17,34),(3,41,18,33),(4,40,13,32),(5,39,14,31),(6,38,15,36),(7,26,43,24),(8,25,44,23),(9,30,45,22),(10,29,46,21),(11,28,47,20),(12,27,48,19)], [(1,32),(2,33),(3,34),(4,35),(5,36),(6,31),(7,27),(8,28),(9,29),(10,30),(11,25),(12,26),(13,37),(14,38),(15,39),(16,40),(17,41),(18,42),(19,43),(20,44),(21,45),(22,46),(23,47),(24,48)]])

Dic3:4D4 is a maximal subgroup of
C24.35D6  C24.38D6  C24.42D6  C42.188D6  C42.91D6  C42:12D6  C42.96D6  C4xD4:2S3  C42.104D6  C4xS3xD4  C42:13D6  C42.108D6  Dic6:23D4  C42.119D6  C24.67D6  C24:8D6  C24.44D6  C24.46D6  C12:(C4oD4)  Dic6:20D4  C6.342+ 1+4  C4:C4:21D6  C6.402+ 1+4  C6.422+ 1+4  C6.432+ 1+4  C6.442+ 1+4  C4:C4.187D6  C4:C4:26D6  Dic6:21D4  C6.1182+ 1+4  C6.522+ 1+4  C6.562+ 1+4  C6.782- 1+4  C4:C4.197D6  C6.1212+ 1+4  C6.822- 1+4  C4:C4:28D6  C6.1222+ 1+4  C6.632+ 1+4  C6.642+ 1+4  C6.662+ 1+4  C6.672+ 1+4  C6.852- 1+4  C42.233D6  C42.137D6  C42.138D6  Dic6:10D4  C42:22D6  C42:23D6  C42.234D6  C42.143D6  C42.160D6  C42.189D6  C42.161D6  C42.162D6  C42.163D6  C42.164D6  Dic9:4D4  C62.49C23  Dic3:4D12  C62.51C23  C62.72C23  C62.94C23  C62.115C23  C62.225C23  Dic3:2S4  Dic3:4D20  Dic15:13D4  C15:17(C4xD4)  Dic15:9D4  C15:28(C4xD4)  Dic15:17D4  Dic15:19D4  C3:D4:F5
Dic3:4D4 is a maximal quotient of
C6.(C4xQ8)  Dic3:C42  C6.(C4xD4)  Dic3:C4:C4  D6:C42  D6:C4:C4  D6:C4:5C4  D6:C4:3C4  C3:D4:C8  D6:2M4(2)  Dic3:M4(2)  C3:C8:26D4  Dic3:4D8  D4.S3:C4  Dic3:6SD16  D4:S3:C4  Dic3:7SD16  C3:Q16:C4  Dic3:4Q16  Q8:3(C4xS3)  M4(2).22D6  C42.196D6  Dic3xC22:C4  C24.14D6  C24.15D6  C24.57D6  C24.23D6  C24.24D6  C24.60D6  Dic9:4D4  C62.49C23  Dic3:4D12  C62.51C23  C62.72C23  C62.94C23  C62.115C23  C62.225C23  Dic3:4D20  Dic15:13D4  C15:17(C4xD4)  Dic15:9D4  C15:28(C4xD4)  Dic15:17D4  Dic15:19D4  C3:D4:F5

Matrix representation of Dic3:4D4 in GL4(F13) generated by

11200
1000
00120
00012
,
0800
8000
0080
0008
,
0100
1000
0012
001212
,
12000
01200
001211
0001
G:=sub<GL(4,GF(13))| [1,1,0,0,12,0,0,0,0,0,12,0,0,0,0,12],[0,8,0,0,8,0,0,0,0,0,8,0,0,0,0,8],[0,1,0,0,1,0,0,0,0,0,1,12,0,0,2,12],[12,0,0,0,0,12,0,0,0,0,12,0,0,0,11,1] >;

Dic3:4D4 in GAP, Magma, Sage, TeX

{\rm Dic}_3\rtimes_4D_4
% in TeX

G:=Group("Dic3:4D4");
// GroupNames label

G:=SmallGroup(96,88);
// by ID

G=gap.SmallGroup(96,88);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,217,188,50,2309]);
// Polycyclic

G:=Group<a,b,c,d|a^6=c^4=d^2=1,b^2=a^3,b*a*b^-1=c*a*c^-1=a^-1,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Character table of Dic3:4D4 in TeX

׿
x
:
Z
F
o
wr
Q
<