metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4.9D6, C12.50D4, Q8.14D6, C12.19C23, Dic6.12C22, D4.S3⋊6C2, C4○D4.4S3, C3⋊Q16⋊6C2, (C2×C6).10D4, (C2×C4).23D6, C6.61(C2×D4), C3⋊C8.4C22, C3⋊5(C8.C22), (C2×Dic6)⋊11C2, C4.25(C3⋊D4), C4.Dic3⋊10C2, C4.19(C22×S3), (C3×D4).9C22, (C3×Q8).9C22, (C2×C12).44C22, C22.6(C3⋊D4), (C3×C4○D4).3C2, C2.25(C2×C3⋊D4), SmallGroup(96,158)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Q8.14D6
G = < a,b,c,d | a4=c6=1, b2=d2=a2, bab-1=dad-1=a-1, ac=ca, cbc-1=a2b, dbd-1=ab, dcd-1=c-1 >
Subgroups: 122 in 60 conjugacy classes, 29 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, Dic3, C12, C12, C2×C6, C2×C6, M4(2), SD16, Q16, C2×Q8, C4○D4, C3⋊C8, Dic6, Dic6, C2×Dic3, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C8.C22, C4.Dic3, D4.S3, C3⋊Q16, C2×Dic6, C3×C4○D4, Q8.14D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊D4, C22×S3, C8.C22, C2×C3⋊D4, Q8.14D6
Character table of Q8.14D6
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 6D | 8A | 8B | 12A | 12B | 12C | 12D | 12E | |
size | 1 | 1 | 2 | 4 | 2 | 2 | 2 | 4 | 12 | 12 | 2 | 4 | 4 | 4 | 12 | 12 | 2 | 2 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | -2 | -1 | 2 | 2 | -2 | 0 | 0 | -1 | -1 | 1 | 1 | 0 | 0 | -1 | -1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | -2 | 2 | -1 | -2 | 2 | -2 | 0 | 0 | -1 | 1 | -1 | -1 | 0 | 0 | 1 | 1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ12 | 2 | 2 | 2 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | -2 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | -2 | -2 | -1 | -2 | 2 | 2 | 0 | 0 | -1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ15 | 2 | 2 | -2 | 0 | -1 | 2 | -2 | 0 | 0 | 0 | -1 | 1 | -√-3 | √-3 | 0 | 0 | -1 | -1 | √-3 | -√-3 | 1 | complex lifted from C3⋊D4 |
ρ16 | 2 | 2 | 2 | 0 | -1 | -2 | -2 | 0 | 0 | 0 | -1 | -1 | -√-3 | √-3 | 0 | 0 | 1 | 1 | -√-3 | √-3 | 1 | complex lifted from C3⋊D4 |
ρ17 | 2 | 2 | -2 | 0 | -1 | 2 | -2 | 0 | 0 | 0 | -1 | 1 | √-3 | -√-3 | 0 | 0 | -1 | -1 | -√-3 | √-3 | 1 | complex lifted from C3⋊D4 |
ρ18 | 2 | 2 | 2 | 0 | -1 | -2 | -2 | 0 | 0 | 0 | -1 | -1 | √-3 | -√-3 | 0 | 0 | 1 | 1 | √-3 | -√-3 | 1 | complex lifted from C3⋊D4 |
ρ19 | 4 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ20 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2√3 | 2√3 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ21 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2√3 | -2√3 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 30 19 7)(2 25 20 8)(3 26 21 9)(4 27 22 10)(5 28 23 11)(6 29 24 12)(13 32 42 47)(14 33 37 48)(15 34 38 43)(16 35 39 44)(17 36 40 45)(18 31 41 46)
(1 22 19 4)(2 5 20 23)(3 24 21 6)(7 10 30 27)(8 28 25 11)(9 12 26 29)(13 44 42 35)(14 36 37 45)(15 46 38 31)(16 32 39 47)(17 48 40 33)(18 34 41 43)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 46 19 31)(2 45 20 36)(3 44 21 35)(4 43 22 34)(5 48 23 33)(6 47 24 32)(7 18 30 41)(8 17 25 40)(9 16 26 39)(10 15 27 38)(11 14 28 37)(12 13 29 42)
G:=sub<Sym(48)| (1,30,19,7)(2,25,20,8)(3,26,21,9)(4,27,22,10)(5,28,23,11)(6,29,24,12)(13,32,42,47)(14,33,37,48)(15,34,38,43)(16,35,39,44)(17,36,40,45)(18,31,41,46), (1,22,19,4)(2,5,20,23)(3,24,21,6)(7,10,30,27)(8,28,25,11)(9,12,26,29)(13,44,42,35)(14,36,37,45)(15,46,38,31)(16,32,39,47)(17,48,40,33)(18,34,41,43), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,46,19,31)(2,45,20,36)(3,44,21,35)(4,43,22,34)(5,48,23,33)(6,47,24,32)(7,18,30,41)(8,17,25,40)(9,16,26,39)(10,15,27,38)(11,14,28,37)(12,13,29,42)>;
G:=Group( (1,30,19,7)(2,25,20,8)(3,26,21,9)(4,27,22,10)(5,28,23,11)(6,29,24,12)(13,32,42,47)(14,33,37,48)(15,34,38,43)(16,35,39,44)(17,36,40,45)(18,31,41,46), (1,22,19,4)(2,5,20,23)(3,24,21,6)(7,10,30,27)(8,28,25,11)(9,12,26,29)(13,44,42,35)(14,36,37,45)(15,46,38,31)(16,32,39,47)(17,48,40,33)(18,34,41,43), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,46,19,31)(2,45,20,36)(3,44,21,35)(4,43,22,34)(5,48,23,33)(6,47,24,32)(7,18,30,41)(8,17,25,40)(9,16,26,39)(10,15,27,38)(11,14,28,37)(12,13,29,42) );
G=PermutationGroup([[(1,30,19,7),(2,25,20,8),(3,26,21,9),(4,27,22,10),(5,28,23,11),(6,29,24,12),(13,32,42,47),(14,33,37,48),(15,34,38,43),(16,35,39,44),(17,36,40,45),(18,31,41,46)], [(1,22,19,4),(2,5,20,23),(3,24,21,6),(7,10,30,27),(8,28,25,11),(9,12,26,29),(13,44,42,35),(14,36,37,45),(15,46,38,31),(16,32,39,47),(17,48,40,33),(18,34,41,43)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,46,19,31),(2,45,20,36),(3,44,21,35),(4,43,22,34),(5,48,23,33),(6,47,24,32),(7,18,30,41),(8,17,25,40),(9,16,26,39),(10,15,27,38),(11,14,28,37),(12,13,29,42)]])
Q8.14D6 is a maximal subgroup of
C42⋊5D6 Q8.14D12 Q8.8D12 Q8.10D12 M4(2).13D6 M4(2).16D6 2+ 1+4.4S3 2- 1+4.2S3 D8⋊11D6 D8.10D6 D8⋊4D6 S3×C8.C22 C12.C24 D12.33C23 D12.35C23 D4.D18 C12.3S4 D12.32D6 D12.29D6 Dic6.19D6 D12.11D6 C62.75D4 C12.6S4 D20.37D6 C60.63D4 C60.8C23 D20.13D6 D4.9D30
Q8.14D6 is a maximal quotient of
C4⋊C4.232D6 C4⋊C4.233D6 C4⋊C4.237D6 C12.50D8 C42.51D6 D4.2D12 Q8⋊4Dic6 C42.59D6 C12⋊7Q16 (C2×C6).D8 Dic6⋊17D4 C3⋊C8⋊5D4 (C2×Q8).49D6 Dic6.37D4 C3⋊C8.6D4 C42.61D6 C42.62D6 C42.65D6 Dic6.4Q8 C42.68D6 C42.71D6 C4○D4⋊3Dic3 (C3×D4).32D4 D4.D18 D12.32D6 D12.29D6 Dic6.19D6 D12.11D6 C62.75D4 D20.37D6 C60.63D4 C60.8C23 D20.13D6 D4.9D30
Matrix representation of Q8.14D6 ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 10 | 0 | 0 |
0 | 0 | 29 | 72 | 0 | 0 |
0 | 0 | 32 | 14 | 1 | 71 |
0 | 0 | 16 | 14 | 1 | 72 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 52 | 51 | 3 | 0 |
0 | 0 | 0 | 46 | 14 | 59 |
0 | 0 | 23 | 13 | 2 | 19 |
0 | 0 | 23 | 13 | 48 | 46 |
8 | 0 | 0 | 0 | 0 | 0 |
71 | 64 | 0 | 0 | 0 | 0 |
0 | 0 | 52 | 51 | 3 | 0 |
0 | 0 | 48 | 46 | 0 | 14 |
0 | 0 | 35 | 13 | 21 | 54 |
0 | 0 | 29 | 13 | 21 | 27 |
72 | 28 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 14 | 0 | 36 |
0 | 0 | 69 | 41 | 11 | 0 |
0 | 0 | 56 | 38 | 32 | 33 |
0 | 0 | 24 | 5 | 16 | 33 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,29,32,16,0,0,10,72,14,14,0,0,0,0,1,1,0,0,0,0,71,72],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,52,0,23,23,0,0,51,46,13,13,0,0,3,14,2,48,0,0,0,59,19,46],[8,71,0,0,0,0,0,64,0,0,0,0,0,0,52,48,35,29,0,0,51,46,13,13,0,0,3,0,21,21,0,0,0,14,54,27],[72,0,0,0,0,0,28,1,0,0,0,0,0,0,40,69,56,24,0,0,14,41,38,5,0,0,0,11,32,16,0,0,36,0,33,33] >;
Q8.14D6 in GAP, Magma, Sage, TeX
Q_8._{14}D_6
% in TeX
G:=Group("Q8.14D6");
// GroupNames label
G:=SmallGroup(96,158);
// by ID
G=gap.SmallGroup(96,158);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,96,218,188,579,159,69,2309]);
// Polycyclic
G:=Group<a,b,c,d|a^4=c^6=1,b^2=d^2=a^2,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,c*b*c^-1=a^2*b,d*b*d^-1=a*b,d*c*d^-1=c^-1>;
// generators/relations
Export