Copied to
clipboard

G = Q8.A4order 96 = 25·3

The non-split extension by Q8 of A4 acting through Inn(Q8)

non-abelian, soluble

Aliases: Q8.A4, Q8oSL2(F3), 2+ 1+4:1C3, SL2(F3):4C22, C4oD4.C6, C4.A4:3C2, C4.2(C2xA4), Q8.2(C2xC6), C2.6(C22xA4), SmallGroup(96,201)

Series: Derived Chief Lower central Upper central

C1C2Q8 — Q8.A4
C1C2Q8SL2(F3)C4.A4 — Q8.A4
Q8 — Q8.A4
C1C2Q8

Generators and relations for Q8.A4
 G = < a,b,c,d,e | a4=e3=1, b2=c2=d2=a2, bab-1=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=a2c, ece-1=a2cd, ede-1=c >

Subgroups: 139 in 46 conjugacy classes, 16 normal (7 characteristic)
Quotients: C1, C2, C3, C22, C6, A4, C2xC6, C2xA4, C22xA4, Q8.A4
6C2
6C2
6C2
4C3
3C22
3C22
3C22
3C4
12C22
12C22
4C6
3D4
3C2xC4
3C23
3C2xC4
3D4
3C2xC4
3D4
3D4
3D4
3D4
3C23
4C12
4C12
4C12
3C2xD4
3C2xD4
3C2xD4
3C4oD4
4C3xQ8

Character table of Q8.A4

 class 12A2B2C2D3A3B4A4B4C4D6A6B12A12B12C12D12E12F
 size 1166644222644888888
ρ11111111111111111111    trivial
ρ211-11-1111-1-1111-11-1-1-11    linear of order 2
ρ311-1-1111-11-1111-1-111-1-1    linear of order 2
ρ4111-1-111-1-111111-1-1-11-1    linear of order 2
ρ511111ζ32ζ31111ζ3ζ32ζ3ζ3ζ32ζ3ζ32ζ32    linear of order 3
ρ611-1-11ζ3ζ32-11-11ζ32ζ3ζ6ζ6ζ3ζ32ζ65ζ65    linear of order 6
ρ711111ζ3ζ321111ζ32ζ3ζ32ζ32ζ3ζ32ζ3ζ3    linear of order 3
ρ8111-1-1ζ32ζ3-1-111ζ3ζ32ζ3ζ65ζ6ζ65ζ32ζ6    linear of order 6
ρ911-11-1ζ32ζ31-1-11ζ3ζ32ζ65ζ3ζ6ζ65ζ6ζ32    linear of order 6
ρ10111-1-1ζ3ζ32-1-111ζ32ζ3ζ32ζ6ζ65ζ6ζ3ζ65    linear of order 6
ρ1111-11-1ζ3ζ321-1-11ζ32ζ3ζ6ζ32ζ65ζ6ζ65ζ3    linear of order 6
ρ1211-1-11ζ32ζ3-11-11ζ3ζ32ζ65ζ65ζ32ζ3ζ6ζ6    linear of order 6
ρ13331-11003-3-3-100000000    orthogonal lifted from C2xA4
ρ1433-11100-3-33-100000000    orthogonal lifted from C2xA4
ρ1533-1-1-100333-100000000    orthogonal lifted from A4
ρ163311-100-33-3-100000000    orthogonal lifted from C2xA4
ρ174-4000-2-2000022000000    orthogonal faithful
ρ184-40001--31+-30000-1--3-1+-3000000    complex faithful
ρ194-40001+-31--30000-1+-3-1--3000000    complex faithful

Permutation representations of Q8.A4
On 24 points - transitive group 24T137
Generators in S24
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 11 3 9)(2 10 4 12)(5 23 7 21)(6 22 8 24)(13 18 15 20)(14 17 16 19)
(1 4 3 2)(5 23 7 21)(6 24 8 22)(9 10 11 12)(13 17 15 19)(14 18 16 20)
(1 12 3 10)(2 9 4 11)(5 6 7 8)(13 18 15 20)(14 19 16 17)(21 24 23 22)
(1 24 16)(2 21 13)(3 22 14)(4 23 15)(5 18 10)(6 19 11)(7 20 12)(8 17 9)

G:=sub<Sym(24)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,11,3,9)(2,10,4,12)(5,23,7,21)(6,22,8,24)(13,18,15,20)(14,17,16,19), (1,4,3,2)(5,23,7,21)(6,24,8,22)(9,10,11,12)(13,17,15,19)(14,18,16,20), (1,12,3,10)(2,9,4,11)(5,6,7,8)(13,18,15,20)(14,19,16,17)(21,24,23,22), (1,24,16)(2,21,13)(3,22,14)(4,23,15)(5,18,10)(6,19,11)(7,20,12)(8,17,9)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,11,3,9)(2,10,4,12)(5,23,7,21)(6,22,8,24)(13,18,15,20)(14,17,16,19), (1,4,3,2)(5,23,7,21)(6,24,8,22)(9,10,11,12)(13,17,15,19)(14,18,16,20), (1,12,3,10)(2,9,4,11)(5,6,7,8)(13,18,15,20)(14,19,16,17)(21,24,23,22), (1,24,16)(2,21,13)(3,22,14)(4,23,15)(5,18,10)(6,19,11)(7,20,12)(8,17,9) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,11,3,9),(2,10,4,12),(5,23,7,21),(6,22,8,24),(13,18,15,20),(14,17,16,19)], [(1,4,3,2),(5,23,7,21),(6,24,8,22),(9,10,11,12),(13,17,15,19),(14,18,16,20)], [(1,12,3,10),(2,9,4,11),(5,6,7,8),(13,18,15,20),(14,19,16,17),(21,24,23,22)], [(1,24,16),(2,21,13),(3,22,14),(4,23,15),(5,18,10),(6,19,11),(7,20,12),(8,17,9)]])

G:=TransitiveGroup(24,137);

Q8.A4 is a maximal subgroup of
Q8.4S4  Q8.5S4  Q16.A4  SD16.A4  Q8.6S4  Q8.7S4  2- 1+4:3C6  Ω4+ (F3)  Dic6.A4  Q8.A5  Dic10.A4
Q8.A4 is a maximal quotient of
C4oD4:C12  SL2(F3):6D4  Q8xSL2(F3)  2+ 1+4:C9  Dic6.A4  Dic10.A4

Matrix representation of Q8.A4 in GL4(Q) generated by

0010
000-1
-1000
0100
,
0100
-1000
0001
00-10
,
000-1
0010
0-100
1000
,
00-10
000-1
1000
0100
,
-1/21/21/21/2
-1/2-1/2-1/21/2
-1/21/2-1/2-1/2
-1/2-1/21/2-1/2
G:=sub<GL(4,Rationals())| [0,0,-1,0,0,0,0,1,1,0,0,0,0,-1,0,0],[0,-1,0,0,1,0,0,0,0,0,0,-1,0,0,1,0],[0,0,0,1,0,0,-1,0,0,1,0,0,-1,0,0,0],[0,0,1,0,0,0,0,1,-1,0,0,0,0,-1,0,0],[-1/2,-1/2,-1/2,-1/2,1/2,-1/2,1/2,-1/2,1/2,-1/2,-1/2,1/2,1/2,1/2,-1/2,-1/2] >;

Q8.A4 in GAP, Magma, Sage, TeX

Q_8.A_4
% in TeX

G:=Group("Q8.A4");
// GroupNames label

G:=SmallGroup(96,201);
// by ID

G=gap.SmallGroup(96,201);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,2,-2,288,601,295,159,117,286,202,88]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=e^3=1,b^2=c^2=d^2=a^2,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=a^2*c,e*c*e^-1=a^2*c*d,e*d*e^-1=c>;
// generators/relations

Export

Subgroup lattice of Q8.A4 in TeX
Character table of Q8.A4 in TeX

׿
x
:
Z
F
o
wr
Q
<