metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D75, C25⋊S3, C3⋊D25, C75⋊1C2, C5.D15, C15.1D5, sometimes denoted D150 or Dih75 or Dih150, SmallGroup(150,3)
Series: Derived ►Chief ►Lower central ►Upper central
C75 — D75 |
Generators and relations for D75
G = < a,b | a75=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)
(2 75)(3 74)(4 73)(5 72)(6 71)(7 70)(8 69)(9 68)(10 67)(11 66)(12 65)(13 64)(14 63)(15 62)(16 61)(17 60)(18 59)(19 58)(20 57)(21 56)(22 55)(23 54)(24 53)(25 52)(26 51)(27 50)(28 49)(29 48)(30 47)(31 46)(32 45)(33 44)(34 43)(35 42)(36 41)(37 40)(38 39)
G:=sub<Sym(75)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75), (2,75)(3,74)(4,73)(5,72)(6,71)(7,70)(8,69)(9,68)(10,67)(11,66)(12,65)(13,64)(14,63)(15,62)(16,61)(17,60)(18,59)(19,58)(20,57)(21,56)(22,55)(23,54)(24,53)(25,52)(26,51)(27,50)(28,49)(29,48)(30,47)(31,46)(32,45)(33,44)(34,43)(35,42)(36,41)(37,40)(38,39)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75), (2,75)(3,74)(4,73)(5,72)(6,71)(7,70)(8,69)(9,68)(10,67)(11,66)(12,65)(13,64)(14,63)(15,62)(16,61)(17,60)(18,59)(19,58)(20,57)(21,56)(22,55)(23,54)(24,53)(25,52)(26,51)(27,50)(28,49)(29,48)(30,47)(31,46)(32,45)(33,44)(34,43)(35,42)(36,41)(37,40)(38,39) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)], [(2,75),(3,74),(4,73),(5,72),(6,71),(7,70),(8,69),(9,68),(10,67),(11,66),(12,65),(13,64),(14,63),(15,62),(16,61),(17,60),(18,59),(19,58),(20,57),(21,56),(22,55),(23,54),(24,53),(25,52),(26,51),(27,50),(28,49),(29,48),(30,47),(31,46),(32,45),(33,44),(34,43),(35,42),(36,41),(37,40),(38,39)]])
D75 is a maximal subgroup of
S3×D25 D225 C3⋊D75
D75 is a maximal quotient of Dic75 D225 C3⋊D75
39 conjugacy classes
class | 1 | 2 | 3 | 5A | 5B | 15A | 15B | 15C | 15D | 25A | ··· | 25J | 75A | ··· | 75T |
order | 1 | 2 | 3 | 5 | 5 | 15 | 15 | 15 | 15 | 25 | ··· | 25 | 75 | ··· | 75 |
size | 1 | 75 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
39 irreducible representations
dim | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + |
image | C1 | C2 | S3 | D5 | D15 | D25 | D75 |
kernel | D75 | C75 | C25 | C15 | C5 | C3 | C1 |
# reps | 1 | 1 | 1 | 2 | 4 | 10 | 20 |
Matrix representation of D75 ►in GL2(𝔽151) generated by
112 | 91 |
60 | 131 |
1 | 0 |
123 | 150 |
G:=sub<GL(2,GF(151))| [112,60,91,131],[1,123,0,150] >;
D75 in GAP, Magma, Sage, TeX
D_{75}
% in TeX
G:=Group("D75");
// GroupNames label
G:=SmallGroup(150,3);
// by ID
G=gap.SmallGroup(150,3);
# by ID
G:=PCGroup([4,-2,-3,-5,-5,33,650,250,1923]);
// Polycyclic
G:=Group<a,b|a^75=b^2=1,b*a*b=a^-1>;
// generators/relations
Export