Copied to
clipboard

## G = D153order 306 = 2·32·17

### Dihedral group

Aliases: D153, C9⋊D17, C17⋊D9, C3.D51, C1531C2, C51.1S3, sometimes denoted D306 or Dih153 or Dih306, SmallGroup(306,3)

Series: Derived Chief Lower central Upper central

 Derived series C1 — C153 — D153
 Chief series C1 — C3 — C51 — C153 — D153
 Lower central C153 — D153
 Upper central C1

Generators and relations for D153
G = < a,b | a153=b2=1, bab=a-1 >

153C2
51S3
9D17
17D9
3D51

Smallest permutation representation of D153
On 153 points
Generators in S153
```(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153)
(2 153)(3 152)(4 151)(5 150)(6 149)(7 148)(8 147)(9 146)(10 145)(11 144)(12 143)(13 142)(14 141)(15 140)(16 139)(17 138)(18 137)(19 136)(20 135)(21 134)(22 133)(23 132)(24 131)(25 130)(26 129)(27 128)(28 127)(29 126)(30 125)(31 124)(32 123)(33 122)(34 121)(35 120)(36 119)(37 118)(38 117)(39 116)(40 115)(41 114)(42 113)(43 112)(44 111)(45 110)(46 109)(47 108)(48 107)(49 106)(50 105)(51 104)(52 103)(53 102)(54 101)(55 100)(56 99)(57 98)(58 97)(59 96)(60 95)(61 94)(62 93)(63 92)(64 91)(65 90)(66 89)(67 88)(68 87)(69 86)(70 85)(71 84)(72 83)(73 82)(74 81)(75 80)(76 79)(77 78)```

`G:=sub<Sym(153)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153), (2,153)(3,152)(4,151)(5,150)(6,149)(7,148)(8,147)(9,146)(10,145)(11,144)(12,143)(13,142)(14,141)(15,140)(16,139)(17,138)(18,137)(19,136)(20,135)(21,134)(22,133)(23,132)(24,131)(25,130)(26,129)(27,128)(28,127)(29,126)(30,125)(31,124)(32,123)(33,122)(34,121)(35,120)(36,119)(37,118)(38,117)(39,116)(40,115)(41,114)(42,113)(43,112)(44,111)(45,110)(46,109)(47,108)(48,107)(49,106)(50,105)(51,104)(52,103)(53,102)(54,101)(55,100)(56,99)(57,98)(58,97)(59,96)(60,95)(61,94)(62,93)(63,92)(64,91)(65,90)(66,89)(67,88)(68,87)(69,86)(70,85)(71,84)(72,83)(73,82)(74,81)(75,80)(76,79)(77,78)>;`

`G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153), (2,153)(3,152)(4,151)(5,150)(6,149)(7,148)(8,147)(9,146)(10,145)(11,144)(12,143)(13,142)(14,141)(15,140)(16,139)(17,138)(18,137)(19,136)(20,135)(21,134)(22,133)(23,132)(24,131)(25,130)(26,129)(27,128)(28,127)(29,126)(30,125)(31,124)(32,123)(33,122)(34,121)(35,120)(36,119)(37,118)(38,117)(39,116)(40,115)(41,114)(42,113)(43,112)(44,111)(45,110)(46,109)(47,108)(48,107)(49,106)(50,105)(51,104)(52,103)(53,102)(54,101)(55,100)(56,99)(57,98)(58,97)(59,96)(60,95)(61,94)(62,93)(63,92)(64,91)(65,90)(66,89)(67,88)(68,87)(69,86)(70,85)(71,84)(72,83)(73,82)(74,81)(75,80)(76,79)(77,78) );`

`G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153)], [(2,153),(3,152),(4,151),(5,150),(6,149),(7,148),(8,147),(9,146),(10,145),(11,144),(12,143),(13,142),(14,141),(15,140),(16,139),(17,138),(18,137),(19,136),(20,135),(21,134),(22,133),(23,132),(24,131),(25,130),(26,129),(27,128),(28,127),(29,126),(30,125),(31,124),(32,123),(33,122),(34,121),(35,120),(36,119),(37,118),(38,117),(39,116),(40,115),(41,114),(42,113),(43,112),(44,111),(45,110),(46,109),(47,108),(48,107),(49,106),(50,105),(51,104),(52,103),(53,102),(54,101),(55,100),(56,99),(57,98),(58,97),(59,96),(60,95),(61,94),(62,93),(63,92),(64,91),(65,90),(66,89),(67,88),(68,87),(69,86),(70,85),(71,84),(72,83),(73,82),(74,81),(75,80),(76,79),(77,78)]])`

78 conjugacy classes

 class 1 2 3 9A 9B 9C 17A ··· 17H 51A ··· 51P 153A ··· 153AV order 1 2 3 9 9 9 17 ··· 17 51 ··· 51 153 ··· 153 size 1 153 2 2 2 2 2 ··· 2 2 ··· 2 2 ··· 2

78 irreducible representations

 dim 1 1 2 2 2 2 2 type + + + + + + + image C1 C2 S3 D9 D17 D51 D153 kernel D153 C153 C51 C17 C9 C3 C1 # reps 1 1 1 3 8 16 48

Matrix representation of D153 in GL2(𝔽307) generated by

 56 271 36 92
,
 1 0 306 306
`G:=sub<GL(2,GF(307))| [56,36,271,92],[1,306,0,306] >;`

D153 in GAP, Magma, Sage, TeX

`D_{153}`
`% in TeX`

`G:=Group("D153");`
`// GroupNames label`

`G:=SmallGroup(306,3);`
`// by ID`

`G=gap.SmallGroup(306,3);`
`# by ID`

`G:=PCGroup([4,-2,-3,-17,-3,849,821,1154,3267]);`
`// Polycyclic`

`G:=Group<a,b|a^153=b^2=1,b*a*b=a^-1>;`
`// generators/relations`

Export

׿
×
𝔽