p-group, metacyclic, nilpotent (class 3), monomial
Aliases: C8⋊1C4, C2.2D8, C4.2Q8, C2.2Q16, C22.11D4, C4⋊C4.3C2, (C2×C8).3C2, C4.7(C2×C4), C2.4(C4⋊C4), (C2×C4).18C22, SmallGroup(32,14)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2.D8
G = < a,b,c | a2=b8=1, c2=a, ab=ba, ac=ca, cbc-1=b-1 >
Character table of C2.D8
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | 1 | -1 | i | -i | i | -i | -1 | 1 | -1 | 1 | linear of order 4 |
ρ6 | 1 | -1 | 1 | -1 | 1 | -1 | -i | -i | i | i | 1 | -1 | 1 | -1 | linear of order 4 |
ρ7 | 1 | -1 | 1 | -1 | 1 | -1 | i | i | -i | -i | 1 | -1 | 1 | -1 | linear of order 4 |
ρ8 | 1 | -1 | 1 | -1 | 1 | -1 | -i | i | -i | i | -1 | 1 | -1 | 1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ11 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ13 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ14 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
(1 23)(2 24)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 31)(10 32)(11 25)(12 26)(13 27)(14 28)(15 29)(16 30)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 9 23 31)(2 16 24 30)(3 15 17 29)(4 14 18 28)(5 13 19 27)(6 12 20 26)(7 11 21 25)(8 10 22 32)
G:=sub<Sym(32)| (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,31)(10,32)(11,25)(12,26)(13,27)(14,28)(15,29)(16,30), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,9,23,31)(2,16,24,30)(3,15,17,29)(4,14,18,28)(5,13,19,27)(6,12,20,26)(7,11,21,25)(8,10,22,32)>;
G:=Group( (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,31)(10,32)(11,25)(12,26)(13,27)(14,28)(15,29)(16,30), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,9,23,31)(2,16,24,30)(3,15,17,29)(4,14,18,28)(5,13,19,27)(6,12,20,26)(7,11,21,25)(8,10,22,32) );
G=PermutationGroup([[(1,23),(2,24),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,31),(10,32),(11,25),(12,26),(13,27),(14,28),(15,29),(16,30)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,9,23,31),(2,16,24,30),(3,15,17,29),(4,14,18,28),(5,13,19,27),(6,12,20,26),(7,11,21,25),(8,10,22,32)]])
C2.D8 is a maximal subgroup of
C2.D16 C2.Q32 C23.25D4 M4(2)⋊C4 C4×D8 C4×Q16 SD16⋊C4 C8⋊7D4 C8.18D4 C8⋊D4 C4.Q16 D4.Q8 Q8.Q8 C22.D8 C23.19D4 C23.48D4 C23.20D4 C8.5Q8 C8⋊Q8 C62.7D4 C4.2PSU3(𝔽2) C3⋊S3.4D8
C8p⋊C4: C16⋊3C4 C16⋊4C4 C24⋊1C4 C40⋊5C4 D5.D8 C56⋊1C4 C44.5Q8 C104⋊5C4 ...
C2p.D8: D4⋊Q8 C8⋊2Q8 C6.Q16 C10.D8 C28.Q8 C44.Q8 C26.D8 ...
C2.D8 is a maximal quotient of
C22.4Q16 C62.7D4 C4.2PSU3(𝔽2) C3⋊S3.4D8
C8p⋊C4: C16⋊3C4 C16⋊4C4 C24⋊1C4 C40⋊5C4 D5.D8 C56⋊1C4 C44.5Q8 C104⋊5C4 ...
C2p.D8: C8⋊1C8 C8.4Q8 C6.Q16 C10.D8 C28.Q8 C44.Q8 C26.D8 ...
Matrix representation of C2.D8 ►in GL3(𝔽17) generated by
16 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
16 | 0 | 0 |
0 | 9 | 0 |
0 | 0 | 2 |
4 | 0 | 0 |
0 | 0 | 2 |
0 | 9 | 0 |
G:=sub<GL(3,GF(17))| [16,0,0,0,1,0,0,0,1],[16,0,0,0,9,0,0,0,2],[4,0,0,0,0,9,0,2,0] >;
C2.D8 in GAP, Magma, Sage, TeX
C_2.D_8
% in TeX
G:=Group("C2.D8");
// GroupNames label
G:=SmallGroup(32,14);
// by ID
G=gap.SmallGroup(32,14);
# by ID
G:=PCGroup([5,-2,2,-2,2,-2,40,61,106,302,72]);
// Polycyclic
G:=Group<a,b,c|a^2=b^8=1,c^2=a,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export
Subgroup lattice of C2.D8 in TeX
Character table of C2.D8 in TeX